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Abstract

We investigate the complexity of the k-CUSTOMER VEHICLE ROUTING PROBLEM: Given an edge weighted graph, the problem
requires to compute a minimum weight set of cyclic routes such that each contains a distinguished depot vertex and at most
other k customer vertices, and every customer belongs to exactly one route.
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1. Introduction

Let G = (V,E) be an undirected graph with
V =1{0,1,...,n}. A route in G is a closed walk
which is either a simple cycle containing vertex 0,
or a 2-edge walk (0,i,0) for some i€ V. Letd;; 2 0
denote the length (or cost) of edge (i,j)€E. In the
k-CUSTOMER VEHICLE ROUTING PROBLEM (kVRP), vehi-
cles leave the depor at vertex 0, and visit the other
vertices of V' in order to serve the customers located
there. There is a restriction that a vehicle can visit at
most k vertices other than the depot, however, there
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is no restriction on the number of vehicles used. The
objcctive is to find a sct of routes of minimum total
length, such that every vertex except for the depot is
visited exactly once.

We consider the complexity and approximability
of kVRP as well as some special cases which we now
define. We will also consider directed versions of
these problems, where G is assumed to be a directed

graph.

o METRIC kVRP: In this special case G is a complete
graph and d is a metric, i.e., the triangle inequality
is satisfied.

o UNWEIGHTED kVRP: In this special case d; ; = 1
for every (i,j) € E. The objective now is to min-
imize the number of edges in the routes, and this
is equivalent to minimizing the number of vehicles
(the number of edges is equal to »n plus the number
of vehicles).

o kVRP(2): In this special case G is a complete graph
and the length function 4 has at most two distinct
values.
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o DECISION kVRP: In this version there is no weight
function, and we ask whether there exists a feasible

solution, that is a solution that only uses the edges
of E.

2VRP is polynomial time solvable (even in the more
general case where G is a digraph) since it can be
transformed to a minimum matching problem. In con-
trast, Haimovich and Rinnooy Kan [3] proved that
kVRP, k > 3 is NP-hard. Haimovich et al. [4] gave a
% — 211( approximation for METRIC K VRP.

Bazgan et al. 2] investigated the approximability of
kVRP under the differential measure, that compares
the worst-case ratio of, on the one hand, the differ-
ence between the cost of the solution generated by the
algorithm and the worst cost, and on the other hand,
the difference between the optimal cost and the worst
cost. They designed a % differential approximation for
the general case, and better bounds for special cases
with either bounded values of & or under the assump-
tion that the costs satisfy the triangle inequality. They
also considered the standard approximation measure
and in particular proved that xVRP(2) is not 27 ap-
proximable for any & > 5 and a polynomial p, unless
P = NP.

In this paper, we show that DEcisioN kVRP can be
solved in polynomial time for £ =3 and 4, but not (as-
suming P # NP) for k > 4. This implies that no con-
stant factor approximation algorithm exists for kVRP
for k > 4. We show however, that for k£ = 3, such an
algorithm, with an approximation factor of 4, is pos-
sible. The case k = 4 is still open, but we present a
3-approximation algorithm for 4VRP(2). Finally, we
consider the directed kVRP problem, and show that
in this case there are no bounded approximation algo-
rithms for any & > 3.

We will use the following tools in our construc-
tions: For a given vector b = (by,...,by,), a binary
b-mnatching is a subgraph of G in which every vertex
i € V has a degree of exactly b;. (A binary h-matching
is distinguished from an infeger b-matching where an
edge can be used more than once.) A minimum binary
b-matching is one with minimum total edge weight. A
minimum binary b-matching can be solved in polyno-
mial time. A 2-matching is a b-matching with by =2
fori=1,...,n.

We will use in our proofs the following NP-complete
problems.

PARTITION INTO PATHS OF LENGTH k (kPP) (see, Kirk-
patrick and Hell [6], Steiner [7]): Given an integer
k > 2 and a graph G = (V,E) with |V| =(k + 1)g, is
there a partition of ¥ into g disjoint sets V3,..., ¥, of
k -+ 1 vertices each, so that each subgraph induced by
V; has a Hamiltonian (i.e., a k-edge) path?
3-DIMENSIONAL MATCHING (see, Karp [5]): Given a set
M C W xXxY,where W,X, and Y are disjoint sets
having the same number g of elements, does M contain
a matching, i.e., a subset M’ C M such that |[M'| =g
and no two elements of M’ agree in any coordinate?

2. Undirected VRP

For the graph G, denoted by S the set of vertices
that are adjacent to the depot, and by 7=V \(SU{0}).

Theorem 1. DecisioNn 3VRP is polynomially solvable.

Proof. The problem has a feasible solution iff there
exists a subset E C S x T, such that the degree of
every t €T is 2, and the degree of every s€ S is 0
or 1. This is a bipartite matching problem that can be
solved in polynomial time. O

Definition 2. The graph G’ is constructed from the
graph G = (V, E) with vertex subsets S,7 C V such
that SU T =V \ {0} as follows: Every vertex s €S
is replaced by three vertices, 51,5, and s3, and every
edge (0,s) such that s €S is replaced by four edges
(0,s3), (52,53), (51,52) and (s1,s3). Every vertex r€ T
is replaced by four vertices, t1,...,%, and four edges,
(t1,12), (t2,13), (13, 14), and (¢1,13). An edge (s,t) such
that s €S and € T is replaced by the edge (s1,%4),
and an edge (f,u) such that f,u€ T is replaced by
(#1,u1). Note that edges of E with two ends in § are not
represented in G'. The construction of G’ is illustrated
in Fig. 1, where S = {a,b,c¢} and T = {u,v,w}.

Theorem 3. Decision 4VRP is polynomially solvable.

Proof. Consider the graph G’ as in Definition 2. We
claim that the 4VRP instance on G has a solution
iff there is a subgraph of G’ with degree 2 at every
ve V \ {0}. Checking the latter can be turned into
a binary 2-matching problem by duplicating the de-
pot sufficiently many times (once for every edge that
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Fig. 1. The graphs G and G’.

is incident with it), and therefore it can be done in
polynomial time. To prove the claim, note that the
2-matching must use (v1,v;) for every v € SUT. This
precludes, for example, the use of two edges of the
type (uy,v; ) and (v;, w;) where u,v,w € T. Therefore,
a cycle in the 2-matching may use at most, two con-
secutive vertices from T. Similarly, a cycle containing
two edges of the form (uy, b1), (v4,b1), where u,v €T
and b € S, is not possible. Therefore, the 2-matching
induces in G routes on disjoint sets of three or four
customer vertices each (a route of three (four) vertices
includes two vertices from S and one (two) from T,
in addition to the depot). These routes cover the ver-
tices of T. Any vertex s € S that is not used in these
routes will be covered by a route (0,5,0). O

Theorem 4. Decision kVRP is NP-complete for
k=5

Proof. We use a reduction from (kPP): Let G(V,E)
be an instance of kPP. We construct an instance of
(k + 3)VRP as follows: First we add a depot vertex
0. We also add a set S of 2g new vertices that are
connected by an edge to the depot. Each vertex of S is
also connected by an edge to each vertex of ¥ \ {0}.
It i1s easy to see that kPP has a solution in G iff the
instance of (k + 3)VRP has a solution (a route in the
VRP instance must contain the depot, two vertices
from S, and k + 1 vertices from V). Since kPP is
NP-complete for £ > 2, it follows that the decision
version of kVRP is NP-complete for £ = 5. [

We now consider the unweighted versions of kK VRP
in which all the edges of G have unit length and the
goal is to compute a solution of minimum total length.
We first observe that we could add in the construc-
tion described in Fig. 1, an edge (ay,b;) for every

(a,b) € E, to enable routes (0,a,b,0). However, the
resulting binary 2-matching still cannot account for
routes of the form (0,4, b,c¢,0) where a,b,c €S, and
therefore a minimum cost binary 2-matching does not
necessarily provide an optimal solution to UNWEIGHTED
4VRP. Similar difficulties arise when trying to solve
UNWEIGHTED 3VRP, and in fact these problems are
NP-hard as we now prove.

Theorem 5. UNWEIGHTED kVRP is NP-hard for k = 3.

Proof. The number of edges in a solution to kVRP is
at least |V'|(k+1)/k. This value is achieved if and only
if there is a solution that covers exactly & customers
in every route. This, in turn, is possible if and only
if the (k — 1)PP problem in the graph induced by
the customer vertices has a solution. This leads to a
reduction of (k — 1)PP to uNweIGHTED kVRP. [

Corollary 6. kVRP(2) is NP-hard for k = 3.

Remark 7. Any feasible solution to UNWEIGHTED
kVRP is a 2k/(k + 1)-approximation.

Proof. An optimal solution value uses at best only
(k + 1)-edge routes each covering k customers, and
hence it satisfies opt = |V|(k + 1)/k. On the other
hand, the worst situation is that a solution covers
the vertices by 2-edge routes, and thus its value
is sol < 2|V|. The approximation ratio is therefore
bounded by sol/opt < 2k/(k+1). O

Theorem 8. There is a polynomial 4-approximation
algorithm for 3VRP.

Proof. Consider a 3VRP instance on a graph G =
(V,E). Let P and P’ be copies of V \ {0} and let
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Py = P’ U {0}. Construct a directed bipartite graph
B = (P U P|,F) with vertex bipartition (P,P;) and
edge set F. F consists of all (4, j) pairs such thati € P,
j€P|, and (i,j) € E. Assign capacity 2 to the edges
(v,0) and unit capacity to all other edges in F. As-
sign costs to £ as follows: c¢;; = d;; + do; for ev-
ery (i,j)€P x P/, and ¢; ¢ = %di.o for every i€ P.
Consider a minimum cost flow problem defined on B
such that the total flow from every » € P is exactly
2 and the total flow into every u € P’ is at most 1.
The flow into the copy of the depot 0 in P is not re-
stricted. This is a TRANSPORTATION PROBLEM (which can
be turned into a standard minimum cost flow prob-
lem by adding a source node connected to P by edges
with lower and upper bounds equal to 2, and a sink
node connected to Pj where the edges connected to P’
have unit upper bounds). An integer optimal solution
x = (x;;,(i,j) € F) can be computed in polynomial
time (see for example, [1]). Let ¢(x) = Z(i,j)EF Ci jXi j
be the cost of x.

We now construct a solution to the 3VRP instance
of value a px < 2¢(x). We refer by the same index to
a vertex in ¥ and to the vertices in P and P} which
correspond to it. Define R = {j € P' : >, x;; = 1}.
Let R be the subset of P with the same indices as R’.

1. For every i € R such that x;( =0, let j,k €R be
the vertices such that x; ; = x;; = 1. We construct
aroute C = (0, j,i,k,0). The length of C is dy; +
dji+dig+dio=ci;+ ciix. [Note that the sets of
customers of these routes are disjoint since i ¢ R
and the associated vertices, j, kK € R, are all disjoint. ]

2. For every i &€ R such that x;o = 1, let j€R be
the vertex such that x; ; = 1. We construct a route
C=(0,,i,0). The length of this route is d; o +d; ; +
djo =2c¢i0 + ¢i ;. [Similarly, the sets of customers
on the routes constructed in these two steps are all
disjoint.]

3. For every i € R such that x; o = 2, we construct a
route C = (0,1,0). The cost of this route is 2d; o =
4c¢i0 = 2¢1,0%;,0-

4. While there exists { € ¥ which is still not covered
by any of the routes (and then i € R), we construct
the route C=(0,7,0). Let j satisfy x; ; =1, then the
cost of this route is 2d; ¢ < 2¢;j;.

The cost of each unit of flow has been used
at most twice in the construction, so that the

value of the resulting 3VRP solution satisfies
apx < 2¢(x).

Consider an optimal solution to the 3VRP instance.
We use it to construct a flow solution X such that
(X)) < 20pt.

1. A route (0,7,0) gives X; o =2 with flow cost 2¢; o=
di-().

2. A route (0,4,/,0) gives X; o = X; 0 = 2. The cost
associated with these values is 2(c; 0+ ¢j.0)=dio+
djo.

3. Aroute (0,4,/,k0) gives X; o = X0 =2 and X, ; =
X;x = 1. The associated cost is 2(c¢; 0+ ¢ro0) + )i +
Cik=(dio+dro)+(d;; +dio)+(djx+dro) =
2(dio +dro) +dij+dji-

We conclude that ¢(X) is at most 2opt, where opt
is the optimal value of the 3VRP instance.
Therefore, apx < 2¢(x) < 2¢(X) < dopt. O

We don’t know how to compute an approximation
with a bounded error ratio for 4VRP, except for the
following restricted case.

Theorem 9. There is a polynomial 3-approximation
algorithm for 4VRP(2).

Proof. Suppose that the possible lengths are g < r.
Construct from G the graph G’ as in Definition 2, with
thesetsS={veV : do,=q}and T={v eV :dy,=r}.
Note that, since we assume in this problem that G is
a complete graph, SU T =V \ {0}. Construct from
G’ a graph G by adding two parallel edges (0,74) for
everyteT.

Assign lengths d to G for every u,ve T and a € S
as follows:

~

‘?az,ag =d, 4, = do,q = q (these edges correspond
to a route (0,4,0) in G),

aAfo,u4 =dyu = r (these edges correspond
to a route (0,u,0) in G),

~

da|,u4 = da,u,
”

dul,m = du,u,

d = 0 for the other edges of G.
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Compute a minimum cost binary 2-matching in
G and return the corresponding routes in G, as in
Theorem 3.

The construction imposes two types of constraints
on the 2-matching. One is that a route cannot have
more than two consecutive vertices from 7. The
second is that every vertex from S must be directly
connected to the depot 0. [Actually, we also forbid
routes (0,a,b,0) with a,bh € S. This restriction can be
avoided by adding to G the edges (a;, b; ) with length
a’Aal,bl = d, . However, such a route can be replaced
by routes (0,a,0) and (0, b,0), of total length at most
twice its length.] These restrictions can be imposed
without increasing the total length of the solution
by more than a factor of 3. For example, if an opti-
mal solution has a route (0,v,s,...,0) in which the
S-vertex s is not directly connected to 0, then the
approximate solution may use two routes, (0,v,0)
and (0,s,...,0) and the length is at most doubled. If
a route (0,t,¢,t",...,0) has three consecutive ver-
tices, t,#',t” € T, then again it can be replaced by two
routes, (0,#,¢”,0) and (0,¢”,...,0). The total length
is at most tripled since the cost of the route is at least
r, and the change adds at most 2r. [

3. Directed VRP

We now turn to the directed version of VRP. As
we will see, some of these problems are significantly

harder to solve or approximate than their undirected
counterparts.

Theorem 10. DIRECTED UNWEIGHTED kVRP is NP-
complete for k = 3.

Proof. We describe first the proof for k=3. We use a
reduction from 3-DIMENSIONAL MATCHING. We construct
an instance of DIRECTED UNWEIGHTED 3VRP as follows
V={0}UuVxUVyUWU (UweW(Sw U S},)), where the
vertices in Vy, Vy, and ¥} correspond to the elements
of X, Y and M, respectively. E =Exy UEy UEy U
Exyy UEpyy U (UWEWEW) , where

EX = {(O,X) X E Vx};
Ey ={(»0): ye ¥}
Ey ={(0,m):meVy};

for every m=(w, x, y) € M thereis anarc(x,m) € Ex
and an arc (m, y) € Ey y; for every w e W, let n,, be
the number of times w is present in M. S,, contains
n, — 1 vertices, Si, is a copy of S, and for every s € S,
and its copy s’ € S),, E,, contains arcs (s,s”) and (s’,0).
In addition to these arcs, for every s € S,, and for every
vertex m € V), that contains a coordinate we W, E,,
contains an arc (¢, s).
Fig. 2 illustrates the construction with ¢ =2 and

M = {(Cxr, wi, 1), (x1, W2, y1), (x1, w2, ¥2),

(x2’ Wi, V2 )’ (x2’ Wa, V2 )}'

Fig. 2. Reduction from 3-dimensional matching to directed 3VRP,.
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A solution to 3VRP exists iff there is a 3-dimensional
matching M’. There should be a route (0,x,w, y,0)
for every element in M’, and all the other n,, — 1
vertices v € Vs corresponding to w, should use routes
(0,v,5,5',0) with distinct vertices s € S,,.

The proof that kVRP is NP-complete for k > 3 is
similar. The only change is that we replace every arc
that leaves the depot by a sequence of & — 2 arcs
connected in series, thus adding £ — 3 vertices to any
routc. [J

Corollary 11. precTep kVRP is not 2P approxi-
mable for any k = 3 and a polynomial p, unless P =
NP.
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