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Abstract

We present a randomized approximation algorithm for the metric version of undirected Max TSP. Its expected performance
guarantee approaches % as n — o0, where n is the number of vertices in the graph. © 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

Let G = (V, E) be a complete (undirected) graph
with vertex set V, |V| =n, and edge set E. Fore € E
let w(e) > 0 be its weight. For E' € E we denote
w(E") =) ,cg w(e). For a random subset E' C E,
w(E") denotes the expected value. The MAXIMUM
TRAVELING SALESMAN PROBLEM (Max TSP) is to
compute a Hamiltonian circuit (a four) with maximum
total edge weight. If the weights w(e) satisfy the tri-
angle inequality, we call the problem METRIC MAXI-
MUM TRAVELING SALESMAN PROBLEM (metric Max
TSP). The problem is max-SNP-hard [1] and there-
fore there exists some constant 8 < 1 such that ob-
taining a solution with performance guarantee better
than B is NP-hard. A survey by Barvinok, Gimadi,
and Serdyukov on Max TSP appears in a forthcom-
ing book [2].

We denote the weight of an optimal tour by opt.
In [4] a randomized polynomial algorithm is given for
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Max TSP that guarantees for any r < % a solution of
expected weight at least r opt. A paper by Kostochka
and Serdyukov [5] contains an algorithm with a
performance guarantee of % for the metric Max TSP. It
also contains a %-approximation for the more general
metric directed case.

This paper contains a randomized algorithm which
builds on ideas from the %-approximation for the gen-
eral case developed by Serdyukov in [7] and from
the %—approximation for the metric case developed by
Kostochka and Serdyukov in [5]. We start by describ-
ing these two algorithms and then show how we use
these ideas to construct an approximation algorithm
for the metric case with expected performance guar-
antee which approaches % asn — 00,

A binary 2-matching (also called 2-factor or cycle
cover) is a subgraph in which each vertex in V has a
degree of exactly 2. A maximum binary 2-matching is
one with maximum total edge weight. Hartvigsen [3]
has shown how to compute a maximum binary 2-
matching in O(n3) time (see [6] for another O(n2| E|)
algorithm). The problem of computing a maximum bi-
nary 2-matching is a relaxation of Max TSP and there-
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fore the weight of a maximum binary 2-matching is
an upper bound on opt. All the algorithms mentioned
in this paper start by constructing a maximum binary
2-matching. A subtour in this paper is a subgraph
with no non-Hamiltonian cycles or vertices of degree
greater than 2. Thus by adding edges to a subtour it
can be completed to a tour.

2. Serdyukov’s algorithm

Serdyukov’s algorithm for the general Max TSP is
given in Fig. 1. This presentation assumes that n is
even.

Note that it is always possible to transfer an edge
from C; to M as required. The performance guarantee
follows easily using the assumption that 7 is even.

w(C) > opt while w(M) > lopr.
Thus,

w(Ty) + w(T) > 2opt  and
max{w(T), w(Ty)} > 3opt.

Serdyukov also shows how to modify the algorithm
so that the bound holds when n is odd but this part
is more involved and we are interested here only
in asymptotic bounds so that the parity of n is not
important. For example, if 7 is odd we can randomly
choose a vertex and delete it from the graph. Then
apply the algorithm, and finally insert the vertex into
the tour in an arbitrary location. The expected loss
caused by this procedure is at most a fraction of 1/n
of the solution’s value.

3. The algorithm of Kostochka and Serdyukov

Kostochka and Serdyukov [5] proved the following
result (assuming metric weights): Given a binary 2-
matching C with weight w(C) and cycles Cy, ..., Cs,
let K = min{|C|,...,|Cs]}. There exists a tour T
with weight
K—-1

2K

To realize this bound they generate from C a set of
2K tours and pick up the longest one. Algorithm
Kostochka_Serdyukov given in Fig. 2 is a randomized

version of this algorithm.
Since [Ci| 2 K:

w(T) > 2 w(C).

1
w(ui, v;) < Ew(Ci)-
By the triangle inequality,

w(ui, uiry) + wi, vigq)

Fwu, i)+ w, uiry) 2 2w, v),

w(T) = Y _ w(P)

i=1

1 s
+ 7 Z (wi, wivy) + w(i, vity)
i=1
+ w(ui, vigr) + wvi, div))

s 5
> Y wP)+ 5 Y wn.u)
i=1

i=1

Serdyukov’s Algorithm

input A complete undirected graph G = (V. E) with weights we, e € E.

returns A tour.
begin

Compute a maximum binary 2-matching C = {Cy, ..., Cs}.
Compute a maximum perfect matching M.

fori=1,..., r:

Transfer from C; to M an edge so that M remains a subtour.

end for
Complete C into a tour T;.
Complete M into a tour 7.

return The tour with maximum weight between Ty and 7.

end Serdyukov’s Algorithm

Fig. 1. Serdyukov’s algorithm.
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Kostochka_Serdyukov

input A complete undirected graph G = (V, E) with weights w,,e € E

satisfying the triangle inequality.

returns A tour.
begin

Compute a maximum binary 2-matching C = {Cj, ..., Cs}.

Delete from each cycle Cy, ..., Cs a random edge.

[Alternatively, delete from each cycle a minimum weight edge.]

Let u; and v; be the ends of the path P; that results from C;.

Give each path a random orientation and form a tour 7 by adding
connecting edges between the head of P; and the tail of P; (Ps41 = P)).

return The tour 7.
end Kostochka_Serdyukov

Fig. 2. Kostochka_Serdyukov algorithm.

= iz;:w(Ci) - %gw(ui, v;)
1 5
> (1 - Z—K) ;jw(ci)

1

This result leads to a %-approximation by using a
maximum binary 2-matching for C, noting that K > 3,
and that w(C) = opt.

4. Improving the bound

We will show now how to compute in polynomial
time a random solution of expected weight at least
% times the optimal. As in Serdyukov’s algorithm,
we move one edge from each cycle of the maximum
binary 2-matching to the maximum matching. By
the method of Kostochka and Serdyukov, half of
the weights lost from the binary 2-matching can be
reclaimed when combining the cycles into a tour. We
try to reclaim more when combining the matching
(with the added edges) into a cycle.

The proposed algorithm is given in Fig. 3.

Theorem 1. The expected weight of the tour T re-
turned by Algorithm Metric satisfies

w(T) > (§ — 0(Jz))opt.

Proof. Since the problem of computing a binary
2-matching of maximum weight is a relaxation of
Max TSP, the binary 2-matching C computed in
Step 1 satisfies w(C) > opt. Since any tour can
be decomposed into two disjoint perfect matchings,
w(M) 2 opt/2.

In Step 2, the algorithm selects (sequentially) a pair
of edges, which we call candidates, from each cycle
of C and deletes one of them, where the selection of
the edge to be deleted is with probability . Denote
by a the relative weight in C of the edges that
were candidates for deletion. The expected relative
weight of the edges that were actually deleted is
%a. However, as explained above with respect to
Algorithm Kostochka Serdyukov, half of this weight
is regained when connecting the resulting paths to a
tour T7. Hence,

w(Ty) > [1 -~ %+ %:'w(C) > (1 - %)opt. )

We now consider Step 3. The algorithm adds to M
one of the pair of candidates from each cycle of C.
The expected weight of the added edges is 3aw(C).
Note that if a vertex v is incident to two candidates
then certainly v ¢ S. If v is not incident to a candidate
then certainly v € §. Finally, if v is incident to one
candidate then v € S with probability % (which is the
probability that this candidate is not chosen).

Let |S| =k + 1. For i € S, exactly one edge from
{G, 7)1 j € §\i}is chosen to Ms. Thus, for an edge
(i, j) € EN(S x S) the probability that this edge will
be selected to Ms is 1/k. If (i, j) is selected, charge
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Metric

input A complete undirected graph G = (V. E) with weights w,,e € E

satisfying the triangle inequality.
returns A tour.
begin
Step 1

Compute a maximum binary 2-matching C = {Cy, ..., Cs}.
Compute a maximum perfect matching M .

end Step 1
Step 2
fori=1,...,s:

Identify e, f € E N C; such that both M U {e} and M U { f} are subtours.
Randomly choose g € {e, f} (each with probability 1/2).

P :=C;\ {g).
M :=MU/{g}.
end for

Complete Ule P; into a tour T} as in Algorithm Kostochka_Serdyukov.

end Step 2
Step 3

Let S :=set of end nodes of paths in M.
Compute a random perfect matching Mg over S.
Delete an edge from each cycle in M U M.
Arbitrarily complete M U My into a tour 7.

end Step 3

return The tour T with maximum weight between T and T5.

end Metric

Fig. 3. New algorithm for metric Max TSP.

its weight w(i, j) in the following manner: Suppose
that I is incident to edges €, ¢” € C. If none of these
edges was a candidate, charge w(i, j)/4 to each of
¢ and €”. If one of them , say ¢’ was a candidate,
charge w(i, j)/2 to ¢” (and nothing to ¢). Note that
it cannot be that both €’ and " were candidates since
in such a case i ¢ S. The expected weight charged
to an edge (g,/) € C that was not a candidate is
then

1 w(r, g) w(r, h)
E[Z 4 +Z 4 }

reS\g reS\h

Note that the 41 factor arises also in the case that
the vertex, say g, is incident with a candidate edge
on C, since in such a case g € S with probabil-
ity % and then it gets half of the weight of the
edge of Ms which is incident to it. By the trian-
gle inequality, w(r, g) + w(r,h) > w(g,h) so that

the above sum is at least w(g, h)/4. We conclude
that
l1—«a
4
and consequently

w(Ms) 2 w(C)

w(M U Mg) > (0.5+%+ 1;a)w(c:)

_[(3ta ;
= 4 Op‘

Finally, the algorithm deletes edges from cycles in
M U Mg . We claim that |S| 2 n/3. The reason is that
the perfect matching computed in Step 1 had all n ver-
tices of V with degree 1. Then, one candidate from
each cycle of C was added to M. The number of added
edges is equal to the number of cycles which is at most
n/3. Therefore, after the addition of these edges the
degrees of at most 2n/3 vertices became 2, while at
least n/3 vertices remained with degree 1. The latter
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vertices are precisely the set §, and this proves that
|S| = n/3. Since Ms is a random matching, the prob-
ability that an edge of M U My is contained in a cy-
cle whose size is smaller than /7 is at bounded from
above by

1 1 1 N (1)
—_t ———F 4+ < =0 —}.

(The jth term in the lefi-hand side of this expression
bounds the probability that a cycle containing exactly
J edge from My is created.) Therefore, the expected
weight of edges deleted in this step is O(1//n)w(M U
Mys) and

SRS M

Combining (1) and (2) we get that when o < %,
w(Ty) > Zopt
and when o > %,
w(Ty) > (1 —0(1/+/m))opt.
Thus,
w(T) = max{w(T}), w(T>)}

7 1
Z2 == — . a
(8 O(ﬁ))"p ‘
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Theorem 1 should be modified: Given the process of
selecting candidates, then for every edge e in the cycle
cover there is a probability p. that it will be selected as
a candidate, and there is an (unconditional) probabil-
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The expected relative weight of the edges deleted in
Step 2 is ) _,cc geWe. This is equal to /2 by the ob-
vious relation g, = p./2.
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