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Abstract

‘We combine two known polynomial time approximation algorithms for the maximum traveling salesman problem to obtain a
randomized algorithm which outputs a solution with expected value of at least r times the optimal one for any given r < 25/33.
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1. Introduction

Let G = (V, E) be a complete (undirected) graph
with vertex set V and edge set E. For e € E let
w(e) = 0 be its weight. For E' € E we denote
w(E') =Y, w(e). For a random subset E' C E,
w(E’) denotes the expected value. The maximum
traveling salesman problem (Max TSP) is to compute
a Hamiltonian circuit (a four) with maximum total
edge weight. The problem is max-SNP-hard [1] and
therefore there exists some constant 8 < 1 such that
obtaining a solution with performance guarantee better
than 8 is NP-hard.

We denote the weight of an optimal tour by opt.
In [3] we described a polynomial algorithm that
guarantees forany r < 5/7 a solution of weight at least
r opt. We were then informed by Alexander Ageev that
a paper by Anatoly Serdyukov [5] already contains
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an approximation algorithm with a better performance
guarantee of %opt (and another paper [4] with even
better bounds for the metric case).

We first describe Serdyukov’s algorithm. The algo-
rithm is very simple and elegant and it is given in the
next section. We then combine ideas from [5] and [3]
to form a randomized polynomial algorithm that com-
putes a tour of expected weight at least r opt for any
given r < 25/33. While the improvement is small, it
at least demonstrates that the bound of 3/4 can be
improved and that further research in this direction is
encouraged. This algorithm is described in Section 3.
Finally, in Section 4 we apply these results to obtain
new approximation results for the maximum latency
TSP.

2. Serdyukov’s algorithm

A cycle cover, or binary 2-matching, is a subgraph
in which each vertex in V has a degree of exactly 2.
A subtour is a set of edges that can be completed
to a tour (i.e., contains no non-Hamiltonian cycles
and no vertex of degree greater than 2). A maximum
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Serdyukov’s Algorithm
input

1. A complete undirected graph G = (V, E) with weights w, e € E.

returns A4 four.
begin

Compute a maximum cycle cover C = {Cy, ..., Cr}.

Compute a maximum matching W.

fori=1,...,r:

Transfer from C; to W an edge so that W remains a subtour.

end for
Complete C into a tour Ty.
Complete W into a tour T>.

return the tour with maximum weight between T| and T.

end Serdyukov’s Algorithm

Fig. 1. Serdyukov’s algorithm.

cycle cover is one with maximum total edge weight.
A maximum matching is a set of vertex-disjoint edges
of maximum total weight. Serdyukov’s algorithm for
the case in which | V| is even is given in Fig. 1.

Note that it is always possible to transfer an edge
from C; to W as required. The performance guarantee
follows easily using the assumption that | V| is even.
The weight of the cycle cover is an upper bound
on opt while that of the matching is at least %opt
if |V]| is even. Thus, w(71) + w(Tz) =2 %opt and
max{w(71), w(T»)} 2 %opt. Serdyukov also shows
how to modify the algorithm so that the bound holds
when |V| is odd but this part is more involved and we
are interested here only in asymptotic bounds so that
the parity of | V| is not important.

3. A new algorithm

Algorithm Max TSP is given in Fig. 2. It constructs
three tours and selects the one with greater weight.

The first tour is constructed, as in [3], by Algo-
rithm Al (see Fig. 3). It uses a parameter ¢ > 0.
It treats differently short cycles, such that |C;| <
€1, and long cycles. For each short cycle it com-
putes a maximum Hamiltonian path on its vertices.
For each long cycle it deletes an edge of minimum
length. The resulting path cover is extended to a
tour 77.

The second algorithm (see Fig.4) is a modified
version of Serdyukov’s algorithm. It transfers edges
from C to W using a randomized selection step, and
generates two subtours. The one formed from W with

Max_TSP
input

1. 4 complete undirected graph G = (V, E) with weights w. e € E.

2. A constant € > 0.
returns A tour T.
begin

Compute a maximum cycle cover C = {C1,...,C,}.

T, :=Al(G,C.¢).
(T, T3) := A2(G, ().

return the tour with the maximum weight among Ty, T and T;.

end Max_TSP

Fig. 2. Algorithm Max_TSP.
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Al
input

1. 4 complete undirected graph G = (V, E) with weights w. e¢ € E.

2. A cycle cover C.
3. A constant £ > 0,
returns 4 towr T}.
begin
fori=1,...,r:
if |G| <ot
then

Compute a maximum Hamiltonian path H; in the
subgraph induced by the vertices of C;.

else

Let ¢; be a minimum weight edge of C;.

H; :=C;\{e;}
end if
end for

Connect Hy, ..., Hy in some arbitrary order to form a tour Tj.

return 7.
end A1

Fig. 3. Algorithm Al.

the transferred edges is augmented arbitrarily to a tour
T>. The other one, consisting of the remaining edges
of C, is first augmented by new edges whose two ends
belong to different cycles of C. Then it is arbitrarily
augmented to a tour T3.

Lemma 1. When Algorithm A2 treats C;, it is pos-
sible to construct the desired matchings M; and M|
such that both matchings are nonempty, M; U W and
M; U W are subtours, and each vertex of C; is an end
vertex of at least one edge from M; U M.

Proof. Denote the edges of C; by ¢, ..., e; in cyclic
order, starting from an arbitrary edge.

Follow C; starting from e;. Alternately insert edges
of C; to M; and M/. If such an insertion (say of e;
to M;) would create a cycle in M; U W (in particular,
if this edge is already in W) then skip ¢; and assign
instead the next edge, e;+) to M;. We observe that the
latter assignment is always possible, and we never skip
two successive edges.

Care must be taken with respect to the last assign-
ment. First, there may be a conflict if we assigned both
e1 and e, to M;. We resolve this conflict as follows:

If e; was assigned to M/ then we simply skip e;. Else,
if we skipped ez because it was not possible to as-
sign it to M; then it is possible to assign e; to M;.
Thus, in this case we assign e; to M, rather than
to M;.

A second conflict may occur if both ¢; and ¢; were
skipped. Thus we couldn’t assign e) to M; and we
couldn’t assign e; to M. In this case we will assign
ejtoM ,’ .

In all of the above, the property that each vertex
of C; is an end of at least one edge in M; U M is
maintained. It is also easy to see that M; and M|
contain at least one edge. 0O

We note that the property that both M; and M/ are
nonempty is important to assure that after the transfer
of any of these matchings to W at least one edge
from each cycle was transferred and the remaining
edges form a subtour. The following two lemmas now
follow:

Lemma 2. For each vertex of C;, the probability that
one of the edges incident to it in C; will be transfered
to W by Algorithm A2 is at least 1 /2.
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A2
input

1. 4 complete undirected graph G = (V, E) with weights w, e € E.

returns 4 tour T.
begin

Compute a maximum cycle cover C ={C1q, ...

Cr}.

Let E' be the edges of G with two ends in different cycles of C.

Compute a maximum weight matching M’ C E'.

Compute a maximum matching W in G.
fori=1,...,r:

Construct disjoint nonempty matchings, M; and M from edges of C; so that M; UW and
M!UW are subtours and each vertex of C; is an end of at least one edge from M; U M.
Transfer either M; or M [’ from C; to W, each with probability %

end for
Complete W into a tour T5.

Let P be the set of paths that were formed from C\, ..., Cr after the transfer of edges.

M :={(, j)e M’: i and j have degree 1 in P}.

% M \J P consists of paths Py, ..., P§ and cycles CT, «vs CF such that

each cycle contains at least two edges from M.%

P*={(P},...,P}}.
begin deletion step:
fori=1,...,5

Randomly select an edge e € C; N M.

P*:=P*U(C] \e).
end for
end deletion step

Complete P* to a tour T3 by arbitrary addition of edges.

return 7>, 7.
end 42

Fig. 4. Algorithm A2.

Lemma 3. For every edge e € M’, the probability that
itis in M (i.e., both of its end vertices have degree 1
inP) is at least 1 /4.

By the fact that each cycle in C‘l“, ..., C; contains
at least two edges from M, we obtain:

Lemma 4. For every edge e € M, the probability that
it will be deleted by the deletion step of Algorithm A2
is at most 1/2,

Theorem 5.
25(1 —¢)

max{w(Tl), w(T2)v w(T3)} 2 33 p— 328 OPt

Proof. Let T be an optimal tour. Define Ty (Teyr)
to be the edges of T whose end vertices are in the

same (in different) connectivity components of C.
Suppose w(Ti) = aw(T) = o opt. Consider the tour
T1. For each short cycle of C Algorithm A1 computed
a maximum weight Hamiltonian path and therefore its
contribution to the weight of T} is at least the weight
of Tj,,; in the graph induced by its vertices. Since C is a
maximum cycle cover, w(C;) is at least the weight of
Tine in the subgraph induced by the vertices of C;. In
each long cycle we deleted a minimum weight edge,
thus subtracting from its weight at most a factor of ¢.
Therefore, w(T1) = (1 — &)w(Tin) = (1 — ) opt .

Now consider 75 and 73. Let 8 opt be the total
weight of the edges transferred from C to W. Since the
original weight of W is at least %opr, then w(T3) >
G+ opt.
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The weight of P, the set of paths formed from C
after the transfer of edges, is at least (1 — &) opt. To
this we added edges as follows: We first computed a
maximum matching M’ over G'. w(M") > %w(Tex,)
since T,y can be covered by two disjoint matchings in
G’. We then obtained M by deleting all of the edges
of M’ except those whose two ends have degree 1 in
P. By Lemma 3, each edge in G’ has with probability
1/4 two ends that have degree 1 in P. Therefore,

1 1 1
w(M) > Zw(M’) > gw(Tm) = 5(1 —a)opt.

At this stage we considered the edges of M on cycles
of M U P and deleted each ¢ € M with probability
at most 1/2. The expected weight of the remaining
edges is at least %w(M) > 1'—6(1 — a) opt. Finally, we
obtained 73 by connecting the remaining edges to P.
This step may only increase the weight of the solution.
Thus w(T3) > ((1 = &) + (1 — @) opt.
We conclude that

max{w(Th), w(T), w(T3)}

1 17 o
> -8, ~+6, ——86— — t.
max{( ) 2+ 16 16}017

The minimum value of the right hand side obtains
when o = ﬁ%ﬁ and it then equals %} opt. O

The two time consuming parts of the algorithm are
the computation of a maximum 2-matching and the
computation of maximum Hamiltonian paths on the
subgraphs induced by the short cycles. The first can
be done in O(n*) time and the latter can be done by
applying dynamic programming in time O(/%2') per

subgraph induced by [ vertices. Since for short cycles
I < &7! this amounts to O(n22'/¢). Thus the overall
complexity is O(n2(n + 2!/%)). Given any factor r <
25/33 we can fix £ > 0 and obtain a solution of value
at least r opt in O(n>) time.

4. Maximum latency TSP

Chalasani and Motwani [2] considered the fol-
lowing maximum latency traveling salesman problem
(Max latency TSP) in relation to their treatment of dy-
namic delivery problems. Given an undirected graph
G with vertices {vg,v1,...,Vn} and edge weights
w(e), find a Hamiltonian path starting from vg such
that the total latency of the vertices is maximized. If
in a given path P the length of the ith edge traversed
is w;, then the latency of the jth vertex visited is

Lj=73"!_, w; and the total latency L(P) is

L(P) = il‘f = i(n — i+ Dw;.
j=1 i=1

Chalasani and Motwani showed that, under the as-
sumption that the edge weights satisfy the triangle in-
equality, the farthest neighbor algorithm, starting from
vp, yields a solution of latency at least half the optimal.

We now point out a relation between Max TSP and
Max latency TSP that yields a bounded performance
guarantee without assuming the triangle inequality.
Specifically, we suggest the algorithm given in Fig. 5.

Let P be a maximum latency path. Let 7 be the
Hamiltonian tour obtained by adding to P the edge

Max_Latency
input

1. A complete undirected graph G = (V, E) with weights w, e € E.

2. A distinguished vertex vy € V.

returns

A Hamiltonian path starting at vy.

begin
Compute a tour T.

Let ey and ey the two edges of T which are incident with vy.

Let P, =T \{e;}i=1,2.

return the path with maxinum latency between P and P;.

end Max_Latency

Fig. 5. Maximum latency algorithm.
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between its first and last vertices. Let P’ be the alter-
native solution obtained by deleting the first edge of P
(i.e., the one incident to vp) from T. Thus, P’ visits the
vertices, other than vy, in reverse order of P. It is easy
to see that each edge of T precedes each of the vertices
vl,..., Up in exactly one of the two paths P and P’.
Therefore, each of these edges contributes n times its
weight to the sum L(P) + L(P’). It follows that

L(P) + L(P") =nuw(T)
and in particular,
L(P) <nw(T).

Suppose now that the weight of the tour T computed
by Max_Latency is guaranteed to be at least o times
that of a maximum weight tour in G. In particular
w(T) 2 aw(T). Then, L(P1) + L(Py) = nw(T) =
anw( ?). Thus,

o aA O
max{L(P), L(P2)} > Fnw(T) > S L(P).
With Serdyukov’s algorithm we obtain a 3/8 algo-

rithm for the maximum latency TSP while with our

new algorithm for Max TSP we obtain a randomized
algorithm with a 25/66 bound.
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