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Abstract

We develop a polynomial time approximation algorithm for the maximum traveling salesman problem. It guarantees a
solution value of at least r times the optimal one for any given r < -5, © 1998 Elsevier Science B.V, All rights reserved.
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1. Introduction

Let G = (V, E) be a complete (undirected) graph
with node set V and edge set E. Fore € E let w(e) >
0 be its weight. For E/ € E we denote w(E') =
Y ecg'w(e). For a random subset E' € E, w(E’)
denotes the expected value. The maximum traveling
salesman problem is to compute a Hamiltonian circuit
(a tour) with maximum total edge weight. We denote
the weight of an optimal tour by opt. The problem
is Max-SNP-hard [3] and therefore cannot have a
polynomial time approximation scheme unless P =
NP. Several polynomial algorithms with a constant
performance guarantee are known for it [7-10]; a
polynomial approximation scheme is known for a
geometric version [2], while polynomially solvable
cases are described in {3,5,6].
~ Fisher, Nemhauser and Wolsey [7] showed that
the greedy (see also [9]), the best neighbor, and the
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2-interchange algorithms produce tours whose weights
are at least 0.50pt. The 2-matching algorithm of
Fisher, Nemhauser and Wolsey [7] has a performance
guarantee of % Kosaraju, Park and Stein [10] im-
proved this algorithm and claimed a bound of 3, how-
ever there is a flaw in their proof. The correct bound is
19/27 [4]. (For the directed version of the problem the
algorithm in [10] still gives a bound of approximately
0.6. Our algorithms can be modified for the directed
case, but the resulting bound is lower than 0.6.)

This paper contains a polynomial algorithm that
comgutes a tour of weight at least r opt for any given
r< 5.

2. The algorithm

Algorithm Max_TSP is given in Fig. 1. It constructs
two tours and selects the one with greater weight.
A 2-matching (also called a cycle cover) is a subgraph
with all vertex degrees equal to 2. As in [7], we start by
computing a maximum weight cycle cover, C. Since
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Max_TSP
input
1. A complete undirected graph G = (V, E) with
weights w;j,i,j€V.
2. A constant € > 0.
returns A tour T.
begin
Compute a maximum cycle cover
C={Cy,...,C}
T1:= A1(G,C, ).
Tz := A2(G, C).
if w(Ty) 2 w(T2)
then
return 7}.
else
return 7>.
end if
end Max_TSP

Fig. 1. Algorithm Max_TSP.

the maximum cycle cover problem is a relaxation of
the maximum traveling salesman problem, w(C) >
opt. C consists of vertex disjoint cycles Cy,...,Cr
satisfying |C;1 2 3,i=1,...,r.

The first tour is constructed by Algorithm A1l (see
Fig. 2). It uses a parameter ¢ > 0 whose role is
to balance between the performance guarantee and
the time complexity. It treats differently short cycles,
such that |C;| < €1, and long cycles. For each short
cycle it computes a maximum Hamiltonian path on
its vertices. For each long cycle it deletes an edge of
minimum length. The resulting path cover is extended
to atour 77.

The second tour is also constructed from C. We
start by deleting edges from C according to Delete de-
scribed in Fig. 3. The result is a collection P of sub-
paths of C such that the following two lemmas hold:

Lemma 1. For every edge in C, the probability that it
will be deleted by Procedure Delete is %

Proof. Consider a cycle C; € C with [ =3k + p
-edges for p € {0, 1, 2}. Then k edges are deleted with
probability 1 and an additional edge is deleted with
probability % p- Each edge has the same probability
to be deleted so that the probability for ecach edge

is%. O

Al
input
1. A complete undirected graph G = (V, E) with
weights w;j, i, j€ V.
2. A cycle cover C.
3. A constant € > 0.
returns A tour Ty.

begin

fori=1,...,r:

if |G| <e™!
then

Compute a maximum Hamiltonian path H; in
the subgraph induced by the vertices of C;.
else
Let e; be a minimum weight edge of C;.
H; :=C; \ {ei}.
end if
end for
Connect Hy, ..., H, in some arbitrary order to
form a tour Ty.
return 7j.
end Al

Fig. 2. Algorithm Al.

Lemma 2. For each vertex in V, the probability that
its degree in P is 1 is % For a pair of vertices on
distinct cycles of C, the probability that both have
degree 1 in P is g.

Proof. Consider a cycle C; € C and denote |C;| =1.
Since each vertex of C; has equal probability to have
degree 1 in P, it is sufficient to show that the expected
number of such vertices is %l .

If I mod 3 = 0 then C; breaks into 2-edge paths so

that exactly %l vertices have degree 1.

In the case ! mod 3 = 1 there are two possibilities:

(i) If e; is deleted (with probability ’.li) then we
are left with %(1 — 4) 2-edge paths and two 1-
edge paths with total of %(1 — 4) + 4 vertices of
degree 1.

(i) If e is not deleted (with probability %) then we
are left with %(l —4) 2-edge paths and one 3-edge
path so that the number of vertices with degree 1
is (1 - 4) + 2.
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Delete

input A set of cyclesC = |Cy, ..., C:).

returns A set of paths P.

begin

fori=1,...,r:
Randomly select an edge from C; and mark it e).
Denote the edges of C; in cyclic order according

to an arbitrary orientation and starting at e)

byey,...,e, wherel =|C;|.
iflmod3=0
then

delete the edges e such that j mod 3 =0.
elseif / mod 3 =1
then
delete the edges e such that j mod 3 =0
and also delete ey with probability %
elseif  mod 3 =2
then
delete the edges e such that j mod 3 =0
and also delete ey with probability 32;
end if
end for
Denote the resulting path set by P.
return P.
end Delete

Fig. 3. Procedure Delete.

The expected number of degree 1 vertices is there-
fore 1(3( —4)+4) + 33U -4 +2) = }I. The case
I mod 3 =2 is proved similarly.

For vertices on distinct cycles, the events that a
vertex has degree 1 in P are independent and therefore
the second part of the lemma follows from the first
one. [

The construction of the second tour is done by
Algorithm A2 presented in Fig. 4.

Lemma 3. For every edge e € M, the probability that
it will be deleted by the deletion step of Algorithm A2
is at most %.

Proof. Consider ¢ = (4, v) € M where u € C;. As-
sume that Delete has been applied to all the cycles C;,
i # j resulting in a set P’ of paths such that v is an
end of a path (as implied by the assumption e € M).
Starting from u traverse e to v, follow the path whose

A2

input

1. A complete undirected graph G = (V, E) with
weights wi;, i,j€ V.

2. A cycle cover C.

returns A rour 7.

begin
Let E’ be the edges of G with two ends in

different cycles of C.

Compute a maximum weight matching M’ C E'.
‘P := Delete(C).

M :={(, j) € M': i and j have degree I in P).
% M U P consists of paths P!, ..., P! and
cycles Cy, ..., C} such that each cycle

contains at least two edges from M. %
P*:={P},...,P}).
begin deletion step:
fori=1,...,¢t:
Randomly select an edge e € C* N M.
P*:=P*U(C}\e).
end for
end deletion step
Complete P* to a tour T> by arbitrary addition of
edges.
return 7.
end A2

Fig. 4. Algorithm A2.

end vertex is v, continue from its other end along the
edge of M’ incident with it, and continue alternating
between paths of P’ and edges of M’ incident with
their ends. This process may end in two ways. One is
that it visits nodes of cycles other than C; and finally
it encounters an edge of M’ which is not in M, that is,
its other end is internal to a path in P’. In this case e
does not belong to a cycle of M U P no matter how
Delete will break C; into paths.

The other possibility is that we reach a vertex u’ €
C; through an edge of M’. Callacycle CF of MUP a
k-cycle if it contains k edges of M. We are interested
in the cases where ¢ belongs to a 2- or 3-cycle of
M U P. This is possible if «’ is reached after using
2 or 3 edges from M’ and the number of edges on
C; separating u and u’ equals to the number of edges
in a path created by Delete. Let pg be the probability
(for a fixed P’) that the pattern chosen for C; will be
such that u and «’ are the two ends of a path. In all
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other cases either e is not on any cycle in M U P or it

is on a k-cycle for k > 4. Let p be the probability

that « is an end of a path while «’ is not. In this

case ¢ € M but it is not on any cycle in M U P.

We will prove that pg < peo and this implies that the

probability that e is deleted by Algorithm A2 is at most

% po+ % P4+ 0poc € 41, where p4 is the probability

that e is contained in a k-cycle of M U P such that

k > 4. Note that py, ps and px, above are conditioned

on ¢ € M. We simplify the presentation and prove

Do < Poo for the unconditional probabilities. The same

relation will be implied with respect to the conditional

probabilities since the change only involves division
by a constant.

We prove the above property for all cases except for
when |C;| = 4. We will then analyze the remaining
case in which e is incident with two cycles of C with
exactly four edges each.

e |Cil =3k, ke{l,2,...). In this case Delete breaks
C; into 2-paths and py is the probability that one
of them has ends u and u’. This is possible only if
exactly two edges separate # and #’ on C; and in
this case with equal probability 4 will be an end of
a path while &’ will be a center of another path. Thus
PO = Poo-

e |Cil=3k+1, ke{2,3,...}. In this case Delete

~may result in two cases:

(1) k — 1 2-paths and one 3-path.

(2) k — 1 2-paths and two 1-paths.

Suppose first that ¥ and «’ are adjacent in C;. poo
is the probability that «’ will be internal in a 2- or
3-path whose one end is «. In case 1 (that occurs with
probability %), po = 0. (This is not true when k = 1
and this is why the latter case is treated separately.)
In case (2) (that occurs with probability a_l;), po is the
probability that one of the two 1-paths will be the edge
(u, u’). It follows that

po=l 2 <l(k—l) 2 k

33k+1 33k+1 33k+1

Suppose now that ¥ and u’ are separated by two
edges, (u, z) and (z,u’), in C;. pog is the probability
that Delete forms a 2-path consisting of (u,z) and
(z,u’), while po is the probability that it forms a 2-
or 3-path containing (z, u’) with z as an end vertex.
Clearly, po < poo

Finally, if 4 and «’ are separated by three edges,
(u,2), (z,2') and (', #’), in C; then py is the prob-

=pm.

ability that case (1) obtains and the 3-path consists ex-
actly of the edges between « and u’. po is at least the
probability that this 3-path has z at its end and u’ as an
internal vertex. Thus, po < pPoo.
e |Ci|=3k+2, ke{l,2,...}). In this case Delete

may result in two cases:

(1) k 2-paths and one 1-path.

(2) k — 1 2-paths and one 4-path.

Suppose first that u and u’ are adjacent in C;. In ca-
se (2) po = 0, unless k = 1 in which case pp = poo =
%. In case (1),

1 k
< = .
%k+2 S3kt2 P

Suppose now that ¥ and u’ are separated by two
edges, (u, z) and (z,u’), in C;. pop is the probability
that Delete forms a path consisting of (u,z) and
(z,u’), while p is the probability that it forms a 2- or
3-path containing (z, u’) such that z is an end vertex.
Thus pg € poo-

Finally, if # and u’ are separated by four edges in
C; then in case (1) po =0 (unless k = 1 in which case
P0= Poo = é) while in case (2) pg is the probability
that the 4-path will consist exactly of the 4 edges
between u and u’, so that

1
= —K .
po 3k+2\poo

po:

e ¢ = (u,v) connects cycles C; and C; such that
ICi] = |Cj| = 4. Here we assume that the deletion
pattern is fixed for all cycles of C except for C;
and C;. Delete creates from C; with probability %—
two 1-paths and with probability % one 3-path. The
probability that # will be an end of a path is 1 in the
first case and % in the second case, and % altogether.
Given that 4 is an end of a path, there are two

possible 3-path outcomes of Delete and the two

possible pairs of 1-paths. The probability for each of
these four possibilities (conditioned on the event that

u is an end of a path) is %. For example, for one of the

possible 3-paths, the probability that it will be selected

is % . % and the conditional probability of this event is
obtained by dividing by the probability that « is an end
vertex which is 32- The same holds independently for

C j and v.

Considering the two cycles C; and Cj, there are

11 outcomes (out of the 16 possibilities) under which

both 4 and v are end vertices of paths, and thus
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satisfying the assumption e € M. Out of these, 7 give
that e is not on any cycle in M U P. Since all
possibilities have equal probabilities (by independence
of the applications of Delete to C; and C;), po >
po. O

Theorem 4.
5(1—2¢g)

max {w(Th), w(T2)} > 5—

opt.

Proof. Let T be an optimal tour. Define T;, (Tex) to
be the edges of T whose end vertices are in the same
(in different) connectivity components of C. Suppose
W(Tin) = aw(T) = a - opt. Consider the tour Tj.
For each short cycle of C, Algorithm Al computed a
maximum weight Hamiltonian path and therefore its
contribution to the weight of T is at least the weight of
T.n in the graph induced by its vertices. Since C is a
maximum cycle cover, w(C;) is at least the weight of
Tine in the subgraph induced by the vertices of C;. In
each long cycle we deleted a minimum weight edge,
thus subtracting from its weight at most a factor of €.
Therefore,

w(T) 2 —e)w(Tip) 2 (1 - &)a - opt.

Now consider 75. We constructed 75 by first com-
puting a maximum matching M’ over G’.

w(M') > Aw(Texr)

since Ty can be covered by two disjoint matchings in
G’. We then obtained M by deleting all of the edges of
M’ except those whose two ends have degree 1 in P.
By Lemma 2, each edge in G’ has with probability %
two ends that have degree 1 in P. Therefore,

w(M) = §w(M) > 2w(Tex) = (1 ~ )opt.

At this stage we considered the edges of M on cycles
of M UP. By Lemma 3, Algorithm A2 deletes each
e € M with probability at most % The expected

weight of the remaining edges is at least %w(M )2
é—(l — a)opt. Finally, we obtained 75 by connecting
the remaining edges to P. This step may only increase
the weight of the solution. By Lemma 1,

w(P) > $w(C) > }opt.

Thus

w(®) > (3 + 51— ))opr.

We conclude that
max {w(T}), w(T2)}
> max [(1 - 8)a, % + %(1 —a)]opt.

The minimum value of the right hand side obtains
when a = 5/(7 — 6¢) and it then equals

5(1-29)
(7 — 6¢)

opt. O

The two time consuming parts of the algorithm are
the computation of a maximum 2-matching and the
computation of maximum Hamiltonian paths on the
subgraphs induced by the short cycles. The first can
be done in O(n®) time and the latter can be done by
applying dynamic programming in time O(I22') per
subgraph induced by [ vertices. Since for short cycles
[ < e~ this amounts to O(n22!/¢). Thus the overall
complexity is O(n?(n + 2!/)). Given any factor r < 3
we can fix € > 0 so that r = (5 — 5¢)/(7 — 6¢) and
obtain a solution of value at least r opt in O(n3) time.

3. Concluding remarks

Algorithm Max_TSP can be derandomized to give a
deterministic polynomial algorithm with the same per-
formance guarantee. To execute Algorithm Max_TSP
we generate a random variable, X;, forevery C; € Cin
order to determine its deletion pattern. We will show
that the analysis of the algorithm does not require
full independence of these random variables but rather
3-wise independence. This enables its derandomiza-
tion by replacing the underlying exponentially large
sample space by one of polynomial size (see, for ex-
ample, [1]).

Lemma 1 and the first part of Lemma 2 do not
assume any independence relation among the random
variables while the second part of Lemma 2 only
requires pairwise independence.

The proof of Lemma 3 is concerned with the
probability, pg, that the pattern selected by X; for
C; contains a subpath with ends u and u’, given that
the deletion patterns selected by two or three of the
other cycles of C generate (together with M) a path
between these nodes. Thus, the lemma only requires
X to be independent of any two other variables and
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3-wise independence of X;, j=1,...,r is sufficient
to prove that pp < poeo-

The algorithm also uses randomization in the dele-
tion step of A2. To complete the derandomization we
replace the deletion step by a deterministic one. In-
stead of deleting a random edge in each set C; N M we
delete a smallest weight edge in this set. The weight
of the resulting set of paths is at least that of P* and
therefore Theorem 4 still holds.

When applying the technique of [1] we compute
a prime number g(n) > n and generate r 3-wise in-
dependent uniform random variables V1, ..., V, with
range {0, ...,q(n) ~ 1}. To generate X; we map each
Vi to the three possible deletion patterns for C; if
|Ci| mod 3 = 0. Otherwise we map it to the 2|C;|
patterns that are possible for C;. We would like to
maintain that X; has the desired probabilities for each
pattern. These are 4 in the first case and 1/(3|C;i|)
or 2/(3|C;]) otherwise. We select gq(n) such that
(g(n))/ n slowly increases to oo, and then the desired
probabilities can be approached to any desired accu-
racy. Thus, we obtain that the lemmas and theorem as-
ymptotically hold and a solution with value at least
r opt can be obtained for any r < % The size of the
sample space is g (n)>.

Finally, we note that there exists an attractive
version of our algorithm whose analysis seems to
be more difficult but its actual bound may be better.
Apply Delete before computing the matching M'.
Then define E” as the set of edges connecting pairs
of nodes that are ends of paths generated from distinct
cycles. Compute a maximum matching on E”, call
it M”, and continue as in A2 with M"” replacing
M. The advantage of this version is that w(M") >

w(M). However, in general we now have py, =0 and
Lemma 3 does not hold.
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