

Information Processing Letters 67 (1998) 125-130

Information Processing Letters

An approximation algorithm for the maximum traveling salesman problem

Refael Hassin*, Shlomi Rubinstein 1

Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

> Received 16 July 1997; received in revised form 14 June 1998 Communicated by S. Zaks

Abstract

We develop a polynomial time approximation algorithm for the maximum traveling salesman problem. It guarantees a solution value of at least r times the optimal one for any given $r < \frac{5}{2}$. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Analysis of algorithms; Maximum traveling salesman

1. Introduction

Let G = (V, E) be a complete (undirected) graph with node set V and edge set E. For $e \in E$ let $w(e) \ge 0$ be its weight. For $E' \subseteq E$ we denote $w(E') = \sum_{e \in E'} w(e)$. For a random subset $E' \subseteq E$, w(E') denotes the expected value. The maximum traveling salesman problem is to compute a Hamiltonian circuit (a tour) with maximum total edge weight. We denote the weight of an optimal tour by opt. The problem is Max-SNP-hard [3] and therefore cannot have a polynomial time approximation scheme unless P = NP. Several polynomial algorithms with a constant performance guarantee are known for it [7–10]; a polynomial approximation scheme is known for a geometric version [2], while polynomially solvable cases are described in [3,5,6].

Fisher, Nemhauser and Wolsey [7] showed that the greedy (see also [9]), the best neighbor, and the

2-interchange algorithms produce tours whose weights are at least $0.5 \, opt$. The 2-matching algorithm of Fisher, Nemhauser and Wolsey [7] has a performance guarantee of $\frac{2}{3}$. Kosaraju, Park and Stein [10] improved this algorithm and claimed a bound of $\frac{5}{7}$, however there is a flaw in their proof. The correct bound is 19/27 [4]. (For the directed version of the problem the algorithm in [10] still gives a bound of approximately 0.6. Our algorithms can be modified for the directed case, but the resulting bound is lower than 0.6.)

This paper contains a polynomial algorithm that computes a tour of weight at least r opt for any given $r < \frac{5}{3}$.

2. The algorithm

Algorithm Max_TSP is given in Fig. 1. It constructs two tours and selects the one with greater weight. A 2-matching (also called a cycle cover) is a subgraph with all vertex degrees equal to 2. As in [7], we start by computing a maximum weight cycle cover, C. Since

0020-0190/98/\$19.00 © 1998 Elsevier Science B.V. All rights reserved. PII: S0020-0190(98)00102-1

^{*} Corresponding author. Email: hassin@math.tau.ac.il.

Email: shlom@math.tau.ac.il.

```
Max_TSP
   input
   1. A complete undirected graph G = (V, E) with
      weights w_{ij}, i, j \in V.
   2. A constant \varepsilon > 0.
   returns A tour T.
   begin
   Compute a maximum cycle cover
      \mathcal{C} = \{C_1, \ldots, C_r\}.
   T_1 := A1(G, \mathcal{C}, \varepsilon).
   T_2 := A2(G, \mathcal{C}).
   if w(T_1) \geqslant w(T_2)
      then
         return T_1.
      else
         return T_2.
   end if
   end Max_TSP
```

Fig. 1. Algorithm Max_TSP.

the maximum cycle cover problem is a relaxation of the maximum traveling salesman problem, $w(C) \ge opt$. C consists of vertex disjoint cycles C_1, \ldots, C_r satisfying $|C_i| \ge 3$, $i = 1, \ldots, r$.

The first tour is constructed by Algorithm A1 (see Fig. 2). It uses a parameter $\varepsilon > 0$ whose role is to balance between the performance guarantee and the time complexity. It treats differently short cycles, such that $|C_i| \le \varepsilon^{-1}$, and long cycles. For each short cycle it computes a maximum Hamiltonian path on its vertices. For each long cycle it deletes an edge of minimum length. The resulting path cover is extended to a tour T_1 .

The second tour is also constructed from \mathcal{C} . We start by deleting edges from \mathcal{C} according to *Delete* described in Fig. 3. The result is a collection \mathcal{P} of subpaths of \mathcal{C} such that the following two lemmas hold:

Lemma 1. For every edge in C, the probability that it will be deleted by Procedure Delete is $\frac{1}{3}$.

Proof. Consider a cycle $C_i \in \mathcal{C}$ with l = 3k + p edges for $p \in \{0, 1, 2\}$. Then k edges are deleted with probability 1 and an additional edge is deleted with probability $\frac{1}{3}p$. Each edge has the same probability to be deleted so that the probability for each edge is $\frac{1}{3}$. \square

```
AI
   input
   1. A complete undirected graph G = (V, E) with
      weights w_{ij}, i, j \in V.
   2. A cycle cover C.
   3. A constant \varepsilon > 0.
   returns A tour T_1.
   begin
   for i = 1, \ldots, r:
     if |C_i| \leqslant \varepsilon^{-1}
          Compute a maximum Hamiltonian path H<sub>i</sub> in
          the subgraph induced by the vertices of C_i.
          Let e_i be a minimum weight edge of C_i.
          H_i := C_i \setminus \{e_i\}.
     end if
   end for
   Connect H_1, \ldots, H_r in some arbitrary order to
     form a tour T_1.
   return T_1.
   end A1
```

Fig. 2. Algorithm A1.

Lemma 2. For each vertex in V, the probability that its degree in \mathcal{P} is 1 is $\frac{2}{3}$. For a pair of vertices on distinct cycles of C, the probability that both have degree 1 in \mathcal{P} is $\frac{4}{5}$.

Proof. Consider a cycle $C_i \in \mathcal{C}$ and denote $|C_i| = l$. Since each vertex of C_i has equal probability to have degree 1 in \mathcal{P} , it is sufficient to show that the expected number of such vertices is $\frac{2}{3}l$.

If $l \mod 3 = 0$ then C_i breaks into 2-edge paths so that exactly $\frac{2}{3}l$ vertices have degree 1.

In the case $l \mod 3 = 1$ there are two possibilities:

- (i) If e_1 is deleted (with probability $\frac{1}{3}$) then we are left with $\frac{1}{3}(l-4)$ 2-edge paths and two 1-edge paths with total of $\frac{2}{3}(l-4)+4$ vertices of degree 1.
- (ii) If e_1 is not deleted (with probability $\frac{2}{3}$) then we are left with $\frac{1}{3}(l-4)$ 2-edge paths and one 3-edge path so that the number of vertices with degree 1 is $\frac{2}{3}(l-4) + 2$.

```
Delete
  input A set of cycles C = \{C_1, \ldots, C_r\}.
  returns A set of paths \mathcal{P}.
  begin
  for i = 1, \ldots, r:
     Randomly select an edge from C_i and mark it e_1.
     Denote the edges of C_i in cyclic order according
        to an arbitrary orientation and starting at e1
        by e_1, \ldots, e_l, where l = |C_i|.
     if l \mod 3 = 0
        then
           delete the edges e_i such that j \mod 3 = 0.
        elseif l \mod 3 = 1
        then
           delete the edges e_j such that j \mod 3 = 0
           and also delete e_1 with probability \frac{1}{3}.
        elseif l \mod 3 = 2
        then
           delete the edges e_j such that j \mod 3 = 0
           and also delete e_1 with probability \frac{2}{3}.
      end if
  end for
  Denote the resulting path set by \mathcal{P}.
  return \mathcal{P}.
   end Delete
```

Fig. 3. Procedure Delete.

The expected number of degree 1 vertices is therefore $\frac{1}{3}(\frac{2}{3}(l-4)+4)+\frac{2}{3}(\frac{2}{3}(l-4)+2)=\frac{2}{3}l$. The case $l \mod 3=2$ is proved similarly.

For vertices on distinct cycles, the events that a vertex has degree 1 in \mathcal{P} are independent and therefore the second part of the lemma follows from the first one. \square

The construction of the second tour is done by Algorithm A2 presented in Fig. 4.

Lemma 3. For every edge $e \in M$, the probability that it will be deleted by the deletion step of Algorithm A2 is at most $\frac{1}{4}$.

Proof. Consider $e = (u, v) \in M$ where $u \in C_i$. Assume that *Delete* has been applied to all the cycles C_j , $i \neq j$ resulting in a set \mathcal{P}' of paths such that v is an end of a path (as implied by the assumption $e \in M$). Starting from u traverse e to v, follow the path whose

```
A2
   input
   1. A complete undirected graph G = (V, E) with
      weights w_{ij}, i, j \in V.
   2. A cycle cover C.
   returns A tour T_2.
   begin
      Let E' be the edges of G with two ends in
         different cycles of C.
      Compute a maximum weight matching M' \subset E'.
      \mathcal{P} := Delete(\mathcal{C}).
      M := \{(i, j) \in M': i \text{ and } j \text{ have degree } l \text{ in } \mathcal{P}\}.
      % M \cup P consists of paths P_1^*, \ldots, P_s^* and
         cycles C_1^*, \ldots, C_t^* such that each cycle
         contains at least two edges from M.%
      \mathcal{P}^* := \{P_1^*, \ldots, P_s^*\}.
   begin deletion step:
      for i=1,\ldots,t:
         Randomly select an edge e \in C_i^* \cap M.
         \mathcal{P}^* := \mathcal{P}^* \cup (C_i^* \setminus e).
      end for
   end deletion step
   Complete P^* to a tour T_2 by arbitrary addition of
      edges.
   return T_2.
   end A2
```

Fig. 4. Algorithm A2.

end vertex is v, continue from its other end along the edge of M' incident with it, and continue alternating between paths of \mathcal{P}' and edges of M' incident with their ends. This process may end in two ways. One is that it visits nodes of cycles other than C_i and finally it encounters an edge of M' which is not in M, that is, its other end is internal to a path in \mathcal{P}' . In this case e does not belong to a cycle of $M \cup \mathcal{P}$ no matter how Delete will break C_i into paths.

The other possibility is that we reach a vertex $u' \in C_i$ through an edge of M'. Call a cycle C_i^* of $M \cup \mathcal{P}$ a k-cycle if it contains k edges of M. We are interested in the cases where e belongs to a 2- or 3-cycle of $M \cup \mathcal{P}$. This is possible if u' is reached after using 2 or 3 edges from M' and the number of edges on C_i separating u and u' equals to the number of edges in a path created by Delete. Let p_0 be the probability (for a fixed \mathcal{P}') that the pattern chosen for C_i will be such that u and u' are the two ends of a path. In all

other cases either e is not on any cycle in $M \cup \mathcal{P}$ or it is on a k-cycle for $k \ge 4$. Let p_{∞} be the probability that u is an end of a path while u' is not. In this case $e \in M$ but it is not on any cycle in $M \cup \mathcal{P}$. We will prove that $p_0 \le p_{\infty}$ and this implies that the probability that e is deleted by Algorithm A2 is at most $\frac{1}{2}p_0 + \frac{1}{4}p_4 + 0p_{\infty} \le \frac{1}{4}$, where p_4 is the probability that e is contained in a k-cycle of $M \cup \mathcal{P}$ such that $k \ge 4$. Note that p_0 , p_4 and p_{∞} above are conditioned on $e \in M$. We simplify the presentation and prove $p_0 \le p_{\infty}$ for the unconditional probabilities. The same relation will be implied with respect to the conditional probabilities since the change only involves division by a constant.

We prove the above property for all cases except for when $|C_i| = 4$. We will then analyze the remaining case in which e is incident with two cycles of C with exactly four edges each.

- $|C_i| = 3k$, $k \in \{1, 2, ...\}$. In this case *Delete* breaks C_i into 2-paths and p_0 is the probability that one of them has ends u and u'. This is possible only if exactly two edges separate u and u' on C_i and in this case with equal probability u will be an end of a path while u' will be a center of another path. Thus $p_0 = p_{\infty}$.
- $|C_i| = 3k + 1$, $k \in \{2, 3, ...\}$. In this case Delete may result in two cases:
 - (1) k-1 2-paths and one 3-path.
 - (2) k-1 2-paths and two 1-paths.

Suppose first that u and u' are adjacent in C_i . p_{∞} is the probability that u' will be internal in a 2- or 3-path whose one end is u. In case 1 (that occurs with probability $\frac{2}{3}$), $p_0 = 0$. (This is not true when k = 1 and this is why the latter case is treated separately.) In case (2) (that occurs with probability $\frac{1}{3}$), p_0 is the probability that one of the two 1-paths will be the edge (u, u'). It follows that

$$p_0 = \frac{1}{3} \frac{2}{3k+1} \le \frac{1}{3} \frac{(k-1)}{3k+1} + \frac{2}{3} \frac{k}{3k+1} = p_{\infty}.$$

Suppose now that u and u' are separated by two edges, (u, z) and (z, u'), in C_i . p_0 is the probability that *Delete* forms a 2-path consisting of (u, z) and (z, u'), while p_{∞} is the probability that it forms a 2-or 3-path containing (z, u') with z as an end vertex. Clearly, $p_0 \leq p_{\infty}$.

Finally, if u and u' are separated by three edges, (u, z), (z, z') and (z', u'), in C_i then p_0 is the prob-

ability that case (1) obtains and the 3-path consists exactly of the edges between u and u'. p_{∞} is at least the probability that this 3-path has z at its end and u' as an internal vertex. Thus, $p_0 \le p_{\infty}$.

- $|C_i| = 3k + 2$, $k \in \{1, 2, ...\}$. In this case Delete may result in two cases:
 - (1) k 2-paths and one 1-path.
 - (2) k-1 2-paths and one 4-path.

Suppose first that u and u' are adjacent in C_i . In case (2) $p_0 = 0$, unless k = 1 in which case $p_0 = p_{\infty} = \frac{1}{2}$. In case (1),

$$p_0 = \frac{1}{3k+2} \leqslant \frac{k}{3k+2} = p_{\infty}.$$

Suppose now that u and u' are separated by two edges, (u, z) and (z, u'), in C_i . p_0 is the probability that Delete forms a path consisting of (u, z) and (z, u'), while p_{∞} is the probability that it forms a 2-or 3-path containing (z, u') such that z is an end vertex. Thus $p_0 \leq p_{\infty}$.

Finally, if u and u' are separated by four edges in C_i then in case (1) $p_0 = 0$ (unless k = 1 in which case $p_0 = p_{\infty} = \frac{1}{5}$) while in case (2) p_0 is the probability that the 4-path will consist exactly of the 4 edges between u and u', so that

$$p_0=\frac{1}{3k+2}\leqslant p_\infty.$$

• e = (u, v) connects cycles C_i and C_j such that $|C_i| = |C_j| = 4$. Here we assume that the deletion pattern is fixed for all cycles of C except for C_i and C_j . Delete creates from C_i with probability $\frac{1}{3}$ two 1-paths and with probability $\frac{2}{3}$ one 3-path. The probability that u will be an end of a path is 1 in the first case and $\frac{1}{2}$ in the second case, and $\frac{2}{3}$ altogether.

Given that u is an end of a path, there are two possible 3-path outcomes of *Delete* and the two possible pairs of 1-paths. The probability for each of these four possibilities (conditioned on the event that u is an end of a path) is $\frac{1}{4}$. For example, for one of the possible 3-paths, the probability that it will be selected is $\frac{2}{3} \cdot \frac{1}{4}$ and the conditional probability of this event is obtained by dividing by the probability that u is an end vertex which is $\frac{2}{3}$. The same holds independently for C_j and v.

Considering the two cycles C_i and C_j , there are 11 outcomes (out of the 16 possibilities) under which both u and v are end vertices of paths, and thus

satisfying the assumption $e \in M$. Out of these, 7 give that e is not on any cycle in $M \cup \mathcal{P}$. Since all possibilities have equal probabilities (by independence of the applications of *Delete* to C_i and C_j), $p_{\infty} \ge p_0$. \square

Theorem 4.

$$\max\{w(T_1), w(T_2)\} \geqslant \frac{5(1-\varepsilon)}{7-6\varepsilon} opt.$$

Proof. Let T be an optimal tour. Define T_{int} (T_{ext}) to be the edges of T whose end vertices are in the same (in different) connectivity components of C. Suppose $w(T_{int}) = \alpha w(T) = \alpha \cdot opt$. Consider the tour T_1 . For each short cycle of C, Algorithm A1 computed a maximum weight Hamiltonian path and therefore its contribution to the weight of T is at least the weight of T_{int} in the graph induced by its vertices. Since C is a maximum cycle cover, $w(C_i)$ is at least the weight of T_{int} in the subgraph induced by the vertices of C_i . In each long cycle we deleted a minimum weight edge, thus subtracting from its weight at most a factor of ε . Therefore.

$$w(T_1) \geqslant (1 - \varepsilon)w(T_{int}) \geqslant (1 - \varepsilon)\alpha \cdot opt.$$

Now consider T_2 . We constructed T_2 by first computing a maximum matching M' over G'.

$$w(M') \geqslant \frac{1}{2}w(T_{ext})$$

since T_{ext} can be covered by two disjoint matchings in G'. We then obtained M by deleting all of the edges of M' except those whose two ends have degree 1 in \mathcal{P} . By Lemma 2, each edge in G' has with probability $\frac{4}{9}$ two ends that have degree 1 in \mathcal{P} . Therefore,

$$w(M) \geqslant \frac{4}{9}w(M') \geqslant \frac{2}{9}w(T_{ext}) = \frac{2}{9}(1-\alpha)opt.$$

At this stage we considered the edges of M on cycles of $M \cup \mathcal{P}$. By Lemma 3, Algorithm A2 deletes each $e \in M$ with probability at most $\frac{1}{4}$. The expected weight of the remaining edges is at least $\frac{3}{4}w(M) \geqslant \frac{1}{6}(1-\alpha)opt$. Finally, we obtained T_2 by connecting the remaining edges to \mathcal{P} . This step may only increase the weight of the solution. By Lemma 1,

$$w(\mathcal{P}) \geqslant \frac{2}{3}w(\mathcal{C}) \geqslant \frac{2}{3}opt.$$

Thus

$$w(T_2) \geqslant \left(\frac{2}{3} + \frac{1}{6}(1-\alpha)\right) opt.$$

We conclude that

$$\max \left\{ w(T_1), w(T_2) \right\}$$

$$\geqslant \max \left\{ (1 - \varepsilon)\alpha, \frac{2}{3} + \frac{1}{6}(1 - \alpha) \right\} opt.$$

The minimum value of the right hand side obtains when $\alpha = 5/(7 - 6\varepsilon)$ and it then equals

$$\frac{5(1-\varepsilon)}{(7-6\varepsilon)}opt.$$

The two time consuming parts of the algorithm are the computation of a maximum 2-matching and the computation of maximum Hamiltonian paths on the subgraphs induced by the short cycles. The first can be done in $O(n^3)$ time and the latter can be done by applying dynamic programming in time $O(l^22^l)$ per subgraph induced by l vertices. Since for short cycles $l \le \varepsilon^{-1}$ this amounts to $O(n^22^{1/\varepsilon})$. Thus the overall complexity is $O(n^2(n+2^{1/\varepsilon}))$. Given any factor $r < \frac{5}{7}$ we can fix $\varepsilon > 0$ so that $r = (5 - 5\varepsilon)/(7 - 6\varepsilon)$ and obtain a solution of value at least r opt in $O(n^3)$ time.

3. Concluding remarks

Algorithm Max_TSP can be derandomized to give a deterministic polynomial algorithm with the same performance guarantee. To execute Algorithm Max_TSP we generate a random variable, X_i , for every $C_i \in \mathcal{C}$ in order to determine its deletion pattern. We will show that the analysis of the algorithm does not require full independence of these random variables but rather 3-wise independence. This enables its derandomization by replacing the underlying exponentially large sample space by one of polynomial size (see, for example, [1]).

Lemma 1 and the first part of Lemma 2 do not assume any independence relation among the random variables while the second part of Lemma 2 only requires pairwise independence.

The proof of Lemma 3 is concerned with the probability, p_0 , that the pattern selected by X_i for C_i contains a subpath with ends u and u', given that the deletion patterns selected by two or three of the other cycles of C generate (together with M) a path between these nodes. Thus, the lemma only requires X_i to be independent of any two other variables and

3-wise independence of X_j , j = 1, ..., r is sufficient to prove that $p_0 \le p_{\infty}$.

The algorithm also uses randomization in the deletion step of A2. To complete the derandomization we replace the deletion step by a deterministic one. Instead of deleting a random edge in each set $C_i^* \cap M$ we delete a smallest weight edge in this set. The weight of the resulting set of paths is at least that of \mathcal{P}^* and therefore Theorem 4 still holds.

When applying the technique of [1] we compute a prime number $q(n) \ge n$ and generate r 3-wise independent uniform random variables V_1, \ldots, V_r with range $\{0, \ldots, q(n) - 1\}$. To generate X_i we map each V_i to the three possible deletion patterns for C_i if $|C_i| \mod 3 = 0$. Otherwise we map it to the $2|C_i|$ patterns that are possible for C_i . We would like to maintain that X_i has the desired probabilities for each pattern. These are $\frac{1}{3}$ in the first case and $1/(3|C_i|)$ or $2/(3|C_i|)$ otherwise. We select q(n) such that (q(n))/n slowly increases to ∞ , and then the desired probabilities can be approached to any desired accuracy. Thus, we obtain that the lemmas and theorem asymptotically hold and a solution with value at least r opt can be obtained for any $r < \frac{5}{7}$. The size of the sample space is $q(n)^3$.

Finally, we note that there exists an attractive version of our algorithm whose analysis seems to be more difficult but its actual bound may be better. Apply *Delete* before computing the matching M'. Then define E'' as the set of edges connecting pairs of nodes that are ends of paths generated from distinct cycles. Compute a maximum matching on E'', call it M'', and continue as in A2 with M'' replacing M. The advantage of this version is that $w(M'') \ge 1$

w(M). However, in general we now have $p_{\infty} = 0$ and Lemma 3 does not hold.

Acknowledgment

We thank Randeep Bhatia for suggesting that we derandomize Max_TSP using the fact that it only assumes limited independence.

References

- [1] N. Alon, L. Babai, A. Itai, A fast and simple randomized parallel algorithm for the maximal independent set problem, J. Algorithms 7 (1986) 567-583.
- [2] A.I. Barvinok, Two algorithmic results for the traveling salesman problem, Math. Oper. Res. 21 (1996) 65-84.
- [3] A.I. Barvinok, D.S. Johnson, G.J. Woeginger, R. Woodroofe, Finding maximum length tours under polyhedral norms (1998).
- [4] R. Bhatia, private communication.
- [5] D. Blokh, G. Gutin, Maximizing traveling salesman problem for special matrices, Discrete Appl. Math. 56 (1995) 83-86.
- [6] V.G. Deřneko, G.J. Woeginger, The maximum traveling salesman problem on Demidenko matrices, Report Woe-09, TU Graz, September 1997.
- [7] M.L. Fisher, G.L. Nemhauser, L.A. Wolsey, An analysis of approximations for finding a maximum weight Hamiltonian circuit, Oper. Res. 27 (1979) 799-809.
- [8] R. Hassin, S. Rubinstein, An approximation algorithm for maximum packing of 3-edge paths, Inform. Process. Lett. 63 (1997) 63-67.
- [9] B. Korte, D. Hausmann, An analysis of the greedy heuristic for independence systems, Ann. of Discrete Math. 2 (1978) 65-74.
- [10] S.R. Kosaraju, J.K. Park, C. Stein, Long tours and short superstrings, in: Proc. 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1994, pp. 166-177.