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Abstract

‘We present a randomized ('1§69§ — g)-approximation algorithm for the weighted maximum triangle packing problem, for any given

&> 0. This is the first algorithm for this problem whose performance guarantee is better than % The algorithm also improves the
best-known approximation bound for the maximum 2-edge path packing problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V, E) be a complete (undirected) graph with vertex set V such that |V| = 3n, and edge set E. Fore € E
let w(e) >0 be its weight. For E' € E we denote w(E’) =), g w(e). For arandom subset E’ € E, w(E’) denotes
the expected value. In this paper, a k-path is a simple k-edge path, and similarly a k-cycle is a simple k-edge cycle. A
3-cycle is also called a triangle. The MAXIMUM TRIANGLE PACKING PROBLEM is to compute a set of n vertex-disjoint
triangles with maximum total edge weight.

In this paper we propose a randomized algorithm which is the first approximation algorithm with performance
guarantee strictly better than 0.5. Specifically, our algorithm is an (% — g)-approximation for any given ¢ > 0.

The MAXIMUM 2-PATH PACKING PROBLEM requires to compute a maximum weight set of vertex-disjoint 2-paths. We
improve the best known approximation bound for this problem and prove that our triangle packing algorithm is also a
(2—3 ~— g)-approximation algorithm for this problem.

2. Related literature

The problems of whether the vertex set of a graph can be covered by vertex disjoint 2-paths or vertex disjoint triangles
are NP-complete (see [7, p. 76, 192], respectively). These results imply that the two problems defined in the introduction
are NP-hard.

The problems considered in this paper are special cases of the 3-SET PACKING PROBLEM. In the unweighted version
of this problem, a collection of sets of cardinality at the most three each, is given. The goal is to compute a maximum
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number of disjoint sets from this collection. In the weighted version, each set has a weight, and the goal is to find a
sub-collection of disjoint sets having maximum total weight. We now survey the existing approximation results for the
3-SET PACKING PROBLEM, which of course also apply to the problems treated in this paper.

Hurkens and Schrijver [12] proved that a natural local search algorithm can be used to give a (% — g)-approximation
algorithm for UNWEIGHTED 3-SET PACKING for any ¢ > O (see also [8]). Arkin and Hassin [1] analyzed the local search
algorithm when applied to the WEIGHTED k-SET PACKING PROBLEM. They proved that for k = 3, the result is a (% - &)-
approximation. Bafna et al. [2] analyzed a restricted version of the local search algorithm in which the depth of the
search is also k, for a more general problem of computing a maximum independent set in (k + 1)-claw free graphs. For
k=3itgivesa %-approximation. A more involved algorithm for k-set packing, that combines greedy and local search
ideas was given by Chandra and Halldérsson [4]. This algorithm yields improved bounds for k > 6. Finally, Berman
[3] improved the approximation ratios for all k >>4, and for the maximum independent set in (k + 1)-claw free graphs,
however, the bound for k = 3 is still 0.5.

Kann [13] proved that the UNWEIGHTED TRIANGLE PACKING PROBLEM is APX-complete even for graphs with max-
imum degree 4. Chlebik and Chlebikova [5] proved that it is NP-hard to obtain an approximation factor better than
0.9929.

Feder and Subi [6] considered partitioning the vertices of an input graph G into k-sets, each of which induces a
subgraph of G isomorphic to a given graph H. Assuming that G is k-partite and each vertex of a chosen subgraph must
belong to a given part of G, the problem is polynomial or NP-complete depending on whether H is a forest or not. In
particular, it follows that (i) partitioning the vertices of a 3-partite graph into triangles with each vertex in a distinct
part is NP-complete; and (ii) partitioning into 2-paths with all middle vertices of the paths in the same given part and
the end vertices in distinct other parts is in P.

The MAXIMUM TRAVELING SALESMAN PROBLEM (MAX TSP) asks to compute in an edge weighted graph a Hamiltonian
cycle (or tour) of maximum weight. MAX TSP is a relaxation of MAX k-PATH PACKING for any k. Therefore, an -
approximation algorithm for the former problem can be used to approximate the latter [10]: simply delete every
(k + 1)-th edge from the TSP solution. Choose the starting point so that the deleted weight is at most 1/(k + 1) the
total weight. The result is an (xk/(k + 1))-approximation. By applying the %—g—-approximation randomized algorithm
of Hassin and Rubinstein [11] for MAX TSP, we obtain a (% — g)-approximation for k = 2. For the MAXIMUM 3-PATH
PACKING PROBLEM there is a better 2 bound in [10].

In this paper we give the first algorithm whose performance guarantee is strictly greater than % for MAXIMUM

TRIANGLE PACKING. Our bound is (% — ¢&) for every ¢ > 0. The algorithm is described in Section 3. We also improve

the above-mentioned bound for MAXIMUM WEIGHTED 2-PATH PACKING. This resultis described in Section 4. Specifically,
our algorithm returns a (-2—;— — g)-approximation for this problem.

3. Maximum weighted triangle packing

A (perfect) binary 2-matching (also called 2-factor or cycle cover) is a subgraph in which every vertex in V has a
degree of exactly 2. A maximum binary 2-matching is one with maximum total edge weight. Hartvigsen [9] showed
how to compute a maximum binary 2-matching in O(n?) time (see [14] for another O(n2|E]) algorithm). Note that a
2-matching consists of disjoint simple cycles of at least three edges each, that together span V.

We denote the weight of an optimal weighted triangle packing by opt.

Algorithm WTP is given in Fig. 1. The algorithm starts by computing a maximum binary 2-matching. Long cycles,
where |C| > ¢! (|C| denotes the number of vertices of C), are broken into paths with at most e} edges each, loosing a
fraction of at most ¢ of their weight. To simplify the exposition, the algorithm completes the paths into cycles to form a
cycle cover €. The cycle cover € consists of vertex disjoint cycles Cy, . .., C, satisfying 3 < |C;| < e l+1i=1,...,r.
Since the MAXIMUM CYCLE COVER PROBLEM is a relaxation of the WEIGHTED MAXIMUM TRIANGLE PACKING PROBLEM,

w(@) =2 (1 — &)opt.

Algorithm WTP constructs three solutions and selects the best one. The first solution is attractive when a large fraction
of opt comes from edges that belong to €. The second is attractive when the large fraction of opt comes from edges
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wWTP
input
1. A complete undirected graph G = (V, E) with weights w;; (i,j) € E.
2. A constant € > 0.
returns A triangle packing.
begin
Compute a mazimum cycle cover {C1,...,CL}.
fori=1,...,7:
if |Cl] > e!
then

Remove from C] [€|C{|] edges of total weight at most r€|—‘CC:{‘{|I—]w(C{),

to form a set of paths of at most €' edges each. '

Close each of the paths into a cycle by adding an edge.

end if

end for
C={C,....Cr}:
T.Pl = Al(G,C)
TP2 = A2(G,C)
TP; .= A3(G,C).
return the solution with marimum weight among TPy, TP, and TP;.
end WTP

= the resulting cycle cover.

Fig. 1. Algorithm WTP.

whose two vertices are on the same cycle of €. The third solution deals with the remaining case, in which the optimal
solution also uses a considerable weight of edges that connect distinct cycles of €.

The first solution is constructed by Algorithm Al (see Fig. 2). It selects all the 3-cycles of €. From every k-cycle
C; with k #£ 3, 5, the algorithm selects 3-sets consisting of vertices of pairs of adjacent edges in C; of total weight at
least %w(C,-), to form triangles in the solution. This task can be done by selecting an appropriate edge of the cycle,
and then deleting this edge with one or two of its neighboring edges (depending on the value of |C;| mod 3), and then
every third edge of the cycle according to an arbitrary orientation.

5-cycles obtain special treatment (since the above process would only guarantee % of their weight): From each
5-cycle we select three edges. Two of these edges are adjacent and the third is disjoint from the two. The former edges
define a triangle which is added to the solution. The third edge is added to a special set E’. The selection is made so that
the weight of the adjacent pair plus half the weight of the third edge is maximized. After going through every cycle,
a subset of E’ of total weight at least %w(E ’) is matched to unused vertices to form triangles. (Since |V| = 3n, there
should be a sufficient number of unused vertices.) Thus, in total we gain at least half of the cycle’s weight.

The second solution is constructed by Algorithm A2 (see Fig. 3). The algorithm enumerates all the possible packings
of vertex disjoint 2-sets and 3-sets in the subgraph induced by the vertex set of each cycle C; € €. The weight of a subset
is defined to be the total edge weight of the induced subgraph (a triangle or a single edge). A dynamic programming
recursion is then used to compute the maximum weight of n subsets from the collection. In this formulation, we use
F (i, j) to denote the maximum weight that can be obtained from at most j such subsets, subject to the condition that
the vertex set of each subset must be fully contained in the vertex set of one of the cycles Cy, ..., C;. After computing
F (r, n), the solution that produced this value is completed in an arbitrary way to a triangle packing TP;.

The third solution is constructed by Algorithm A3 (see Fig. 5). It starts by deleting edges from ¥ according to
Procedure Delete described in Fig. 4. The result is a collection £ of subpaths of % such that the following lemma holds
(Figs. 4 and 5):

Lemma 1. Consider a cycle C; € €. Let E é be the edge set deleted from C; by Procedure Delete. Then

1. Ef #4.
2. The edges in E(ij are vertex disjoint.
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Al
input
1. A complete undirected graph G = (V, E) with weights w;; (i,7) € E.
2. A cycle cover C = {Cy,...,Cr}.
returns A triangle packing TP.
begin
TP1 = 0
fori=1,...,r:
if |Cl| =3
then
TP :=TP U {Cl}

elseif {C;| =5
then
Let e, ..., e5 be the edges of C; in cyclic order.
W; 1= w; + Wip1 + JWiy3 [indices taken mod 2.
w; = max{w; :i=1,...,5}.
TP =ThP U {],] +1,5+2}
E :=FE U{j+3,j+4}

elseif |C;| ¢ {3, 5}
then
Let e1,...,e; be the edges of C; in cyclic order.

Add to TP, triangles induced by adjacent pairs of edges from C;

of total weight at least %

Add to V' the vertices of C; that are not incident to selected triangles.
end if

end for
E’ = [%l.' heaviest edges from E'.
for every e € E”

Add to TP triangles formed from e and a third vertex either from

E'\E” or from V'.
return TP
end A1

Fig. 2. Algorithm Al.

3. The expected size of E é is at least %IC il
4. The probability that any given vertex of C; is adjacent to an edge in Eé is at least %

Proof.

The first property holds since an edge e; is deleted from each C;.

The second property holds by the way edges are selected for deletion.

The expected value of |Eé| is %lC,-l for a triangle and %|C,-| otherwise.

If a vertex belongs to a 3-cycle in % then it is incident to e; with probability % If the vertex is in a k-cycle, k > 3,
then since the expected size of Eé is |C;|/4 and these edges are vertex disjoint, the expected number of vertices
incident to these edges is |C;|/2. [

Pl A

Consider a given cycle C € € with |C| = 4k + [. If C is a triangle then exactly one edge is deleted by Procedure
Delete. If | = 0 then every fourth edge is deleted. If [ € {1, 2, 3} and |C| > 3 then the number of deleted edges may
be k or k + 1, and in each case, their location relative to e; is uniquely determined. Let us define a binary random
variable X ¢ such that the number of deleted edges in Cis k + X¢. X¢ uniquely determines the deletion pattern in C,
specifying the spaces among deleted edges, but not their specific location. (Fig. 7 illustrates the deletion patterns of
small cycles, where dashed lines mark deleted edges.) Since every edge has equal probability to be chosen as e, the
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A2
input
1. A complete undirected graph G = (V, E) with weights w;; (i,7) € E.
2. A cycle cover C = {Cy,...,C}.
returns A triangle packing TP;,.
begin
Vi,...,Vy := the vertex sets of Cy,...,C,, respectively.
for j=0,...,n:

F(0,7) =0.
end for
b= 31+ 2)].
fori=1,...,r:
F(i,0) := 0.
for k=1,...,t:
W (i, k) :== mazimum weight of at most k disjoint 3-sets and 2-sets contained in V;.
end for
forj=1,...n
F(i,7) = max{W(i,k) + F(i —1,j — k) : k < min{j,¢} }.
end for
end for

P(r,n) := a collection of 2-sets and 3-sets that gives F(r,n).
return TPy, a completion of P(r,n) into a triangle packing.
end A2

Fig. 3. Algorithm A2,

Delete
input A set of cycles C = {C1,...,Cr}.
returns A set of paths P.
begin
fori=1,...,r:
Randomly select an edge from C; and mark it e;.
Delete e;.
Denote the edges of C; in cyclic order according to an arbitrary orientation
and starting at ey by e1,...,e., where ¢ =|C;|=4k+! andl € {0,...,3}.
Delete from C; the edges e; such that j =1 mod 4 and j < c—3.
ifl=1
then
Delete e._1 with probability %.

elseif | = 2
then
Delete e._1 with probability %

elseif | =3 andc >3
then
Delete ec.—o with probability %.

end if
end for
Denote the resulting path set by P.
return P.
end Delete

Fig. 4. Procedure Delete.
possible mappings of the deletion pattern into C have equal probabilities. Suppose that the deletion pattern is known.

Every mapping of it into C specifies a subset S of vertices that are incident to deleted edges, and thus these vertices are
the end vertices of the paths in 2. We call these vertices free.
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A3
input
1. A complete undirected graph G = (V, E), |V| = 3n, with weights w;; (i,5) € E.
2. A cycle cover C = {Cy,...,C,}.
returns A triangle packing T Ps.
begin
Let E' be the edges of G with two ends in different cycles of C.
Compute a mazimum weight matching M' C E'.
P := Delete(C).
M :={(i,j) € M’ : i and j are end vertices of paths in P}.
% M UP consists of paths Py, ..., P; and cycles CTt,...,C{ such that
each cycle contains at least two edges from M. %
P*.={P;,...,Pr}.
begin cycle canceling step:
fori=1,...,t:
Randomly select an edge e € CF N M.
Add CY\ {e} to P*.
end for
end cycle canceling step
Arbitrarily complete P* to a Hamiltonian cycle T .
Delete n edges from T to obtain a collection P3 of 2-paths of total weight
at least %w(T).
return T P, a completion of Ps into a triangle packing.
end A3

Fig. 5. Algorithm A3.

Cc*

N>

Fig. 6. Acyclein M U £.

Algorithm A3 computes a maximum matching M’ over the set E’ C E of edges with ends in distinct cycles. Only
the subset M C M’ of edges whose two ends become free in the deletion procedure is useful, and it is used to generate
paths with the undeleted edges from %. However, cycles may also be generated this way, and a cycle canceling step
further deletes edges to cancel these cycles. Fig. 6 illustrates this situation, where broken lines denote deleted edges
and dotted lines denote edges that belong to M. The cycle C* consists of the vertices (v, w, a, b, ¢, d, f, u, g), and one
of the edges (v, w), (b, ¢) and (f, u) that belong to M will be deleted to cancel C*.
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Consider an edge é = (v, w) € M. Denote by 7 the probability that ¢ is deleted in the cycle canceling step, given
that its vertices v and w are free (i.e., v, w € S).

Lemma 2. 1<

FNT.

Proof. Suppose that v € C. For every u € C, define dist(u, v) to be the minimum (over the two possibilities) number
of edges on a u — v subpath of C. (For example, dist(u, v) = 2 in Fig. 6.)

In order to prove that 7 < %, we define the following events:

Esy: Xc=x;v,w € §;2UM contains au — v path P such thatéison P, CN P ={u, v},u € S, and dist(u, v) =9.
(For example, P = (v, w, a, b, c,d, f,u) and § =2 in Fig. 6.)

Ec: u and v belong to a common path in £.

Ep: u and v belong to different paths in 2.

If € belongs to a cycle C* € 2 U M, then in the event Ec, |C* N M| >2, whereas in the event Ep, |C* N M| > 4.
Therefore the respective probabilities that é is deleted in the cycle canceling step are at most % and %. Using this
observation,

&)

L

. 1 1
#< Y Y Pr(Es )| 5Pr(Ec|Esx) + -Pr(EplEsy)). D
o=1 x=0 2 4

The proof is completed by Lemma 3.
Let (8, x) = 3Pr(Ec|Esx) + ;Pr(Ep|Ejs ).

Lemma 3. For every é and x,
n(d, x)< 5.

Proof. For a cycle C with ¢ =4k 4+ [ (where ! € {0, 1, 2, 3}), we consider every possible value é of dist(u, v) and
x € {0, 1}. We denote pc = Pr(Ec|E; ), pp =Pr(Ep|E; ), and m = n(J, x). Note that to contradict the claim there
must be vertices with pc > 0. Otherwise, even if pp = 1 for every vertex in S, we still have 7= %. Therefore, our proof
will check the occurrences of pc > 0 and show that when they exist there are sufficient vertices with pp < % so that
still 7 < %. Fig. 7 illustrates the analysis for small values of c. The numbers attached to the free vertices are the values of
pc, pp given that the specified vertex is mapped to v. We skipped trivial cases where both probabilities are 0 for every
free vertex. The analysis below applies to all cases except for three special cases where ¢ = 20, namely (¢ =6, x = 1),
(¢ =8), and (¢ = 10, x = 0). These cases are analyzed in Fig. 7.

1. 0>4. In this case there is at most one pair of vertices with (pc, pp) = (%, %), and the other vertices have pc = 0.
On the other hand, if there is such a pair then there is also a pair of vertices with (pc, pp) = (0, %). Therefore, even
if the rest of the vertices have pp = 1 we still have < %.

2. I =0,0r! >0 and x = 0. In these cases, pc > 0 is possible only with d = 3, in which case (pc, pp) = (%, 0) for
every vertex, except for at most one pair of vertices separated by more than three undeleted edges, where we get
0, 0).

3. I >0 and 6 = 3. This case is dominated (in terms of the value of 7) by the case / = 0 and é = 3. The probabilities
are identical except for that now there is also a pair of vertices with pc = 0.

4, 1 € {1,2},x =1, and é = 1. In these cases there is a pair of vertices with (pc, pp) = (%, %), but all the others have
(pc, pp) = (0, %). (m is maximized when ¢ = 5 and decreases for higher values.)

5. 1=1,x =1 and 6 = 2. There is a pair with (p¢c. pp) = (%, %) and a pair with (p¢, pp) = (0, %). The others have
(0, 0). (Again, 7 is maximized when ¢ = 5 and decreases for higher values.)

6. 1 =2,x =1 and é =2. In this case pc = 0 for every free vertex. []

Theorem 1. max{w(TP1), w(TP2), w(TP3)}> £5(1 — ¢)opt.
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Fig. 7. Deletion patterns of small cycles.

Proof. Algorithm WTP first breaks long cycles loosing at most a fraction ¢ of their weight, and obtains a cycle cover

%. Thus, w(€) > (1 — &)opt.
Let « denote the proportion of w(%) contained in 3-edge cycles. The solution TP, contains all the triangles of % and

at least half of the weight of any other cycle. Thus,
1— 1 1
w(TPy) > (a+ —2E> w(%):—;—_—gw(‘é)z—;g(l—s)opt. (D

Consider an optimal solution. Define Tiy to be the edges of this solution whose end vertices are in the same
connectivity component of %, and suppose that w(Tin ) = f opt. Then
w(TP2) =2 w(Tint) = Bopt. 2)
Algorithm A3 computes a Hamiltonian path 7', and then constructs a triangle packing of weight at least %w(T).
T is built as follows: First % of the weight of any triangle, and % of any other cycle of € is deleted, leaving weight
of [%a + %(1 — o)Jw(%¥). Then edges from the matching M’ are added. Originally w(M’) > @ opt. However only
edges with two free ends are used, and by Lemma 1(4) their expected weight is at least %w(M N> (1_;@ opt. Then
cycles are broken, deleting at most }T of the remaining weight (by Lemma 2). Hence the added weight is at least
33—2(1 — p). Altogether,

w(T)2[3a+ 21 — Dw(@) + (1 — Popr>[2a+ 2(1 — 0))(1 — e)opt + (1 — B)opt.
From this, a solution is formed after deleting at most % of the weight. Hence,

w(TP3) > (f — % — 158) (1 — &)opt. 3)
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It is now easy to prove that max{w(TPy), w(TPy), w(TP3)} > B (1 — e)opt: If > 125 then w(TPy) > (1 — e)opt,
if B> &5 then w(TP3) > £55(1 — £)opt, and if neither of these conditions holds then w(TP3) > £(1 — e)opr. O

The time consuming parts of the algorithm are the computation of a maximum 2-matching and the dynamic program
in Algorithm A2. The first can be computed in time O(n3) as in Ref. [9]. Since the latter is executed on cycles with at
most &1 edges each, it also takes 0O(n3) for any constant &.

4. 2-path packing

Consider now the MAXIMUM 2-PATH PACKING PROBLEM. We apply Algorithm WTP, with two slight changes: one is
that we do not complete 2-paths into triangles, and the other is that in Algorithm A1l we select from every triangle of ¢
the two heaviest edges to form a 2-path. The analysis is identical, except for that the bound guaranteed by Algorithm
Al is only w(TPy) > [%a + %(1 — o)]w(%¥). The resulting approximation bound is % —
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We thank Zhi-Zhong Chen (Tokyo Denki University) for drawing our attention to the following typos in our paper.

Lemma 2. (i) In the definition of E , the term u € § should be deleted. This term should be added instead to the
definitions of Ec and Ep. (ii) The numbers attached to the upper vertices of the first graph in the second row of Fig. 7
should be (0, }) (instead of (3, 0)).

To facilitate understanding of the proof of Lemma 2 we would like to add the following clarifications: (i) in the stated
upper bound on 7, the conditional probabilities are over all possible mappings of the deletion pattern to the cycle with
the specified é and x. (ii) Ec and E p are the events that # and v are ends of, respectively, a common or a different path
in 2. Since it is possible that u ¢ S, the sum of probabilities of these events may be less than 1. (iii) The values attached
to vertices in Fig. 7 are the values of Pc and Pp given that the specified vertex is mapped to v . These values are taken
over the (generally) two possible cases for the location of « on the cycle, given that it is at distance é from v .

Theorem 1. The correct bound is 43/83. (Note that the bound for the 2-edge path packing does not change.) Some
numbers appearing in the proof of Theorem 1 should be changed as follows:

Originally w(M") > (1 — f)/30pt.

Hence Jw(M’) > (1 — B)/120pt.

Hence the added weight is at least -135(1 - B

Altogether,
w(T) = [3a+ 2(1 — )] (1 — )opt + (1 ~ B)opt.
Hence,
w(T P3) > (5 — 5% — 226) (1 - &dopr. @

It follows that max{w(T P1), w(T P2), w(T P3)} > (1 — e)opt : if x> g then w(T P1) > H(1 — &opt, if f>
then w(T P3) > g—%(l — g)opt, and if neither of these conditions holds then w(7 P3) > ‘g%(l — g)opt.
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