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ROBUST MATCHINGS*
REFAEL HASSIN' AND SHLOMI RUBINSTEIN

Abstract. We consider complete graphs with nonnegative edge weights. A p-matching is a set
of p disjoint edges. We prove the existence of a maximal (with respect to inclusion) matching M
that contains for any p < |M| p edges whose total weight is at least —\%- of the maximum weight of

a p-matching. We use this property to approximate the metric maxirmum clustering problemn with
given cluster sizes.
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1. Introduction. Let G = (V, E) be a complete graph with vertex set V such
that |V]| = n, edge set E, and edge weights w(u,v) > 0, (u,v) € E. A p-matching is
a set of p disjoint edges in a graph. A p-matching with p = | 2] is called perfect. A
perfect matching M that for each p = 1,...,|M]| contains p edges whose total weight
is at least a times the maximum weight of a p-matching is said to be a-robust. We
prove that G contains a 712=-r0bust matching. On the other hand, there are graphs

that do not contain an a-robust matching for any o > %

In section 2, we generalize the robustness concept to independence systems. We
prove that a greedy algorithm can be applied in some cases to form robust solutions.
Our main theorem on robust matchings is proved in section 3, and we use it and

a theorem from section 2 to approximate within a factor % the following problem:

Given constants ¢; > ¢3 > - -+ > ¢, find a p-matching M that maximizes Zle Cc; Wy,
where w; > wqy > --- > w), are the edge weights in M.

In section 4, we use these results to approximate the NP-hard METRIC MAXIMUM
CLUSTERING PROBLEM WITH GIVEN CLUSTER SIZES. The input for the problem is
a complete graph with edge weights that satisfy the triangle inequality, and a set of
cluster sizes. The goal is to find a partition of the vertex set, with part (or “cluster”)
sizes as required, that maximizes the total edge weight within the same cluster.

For V! C V we denote by E(V’) the edge set of the subgraph induced by V'. For
E’ C E we denote by W(E') the total weight of edges in E’.

2. Robust independent sets. An independence system is a pair (E,F) con-
sisting of a ground set E and a collection of independent sets, or, equivalently, feasible
solutions, such that F/ ¢ F € F implies F/ € F. Let we > 0, ¢ € E, be weights
attached to the elements of E. The problem of computing an independent set of
maximum weight generalizes many interesting combinatorial optimization problems.
Korte and Hausmann [1] analyzed the performance of the greedy algorithm for the
above problem. The algorithm sorts the elements by weight and inserts them into
the solution, starting with the heaviest one and excluding an element if its addition
would generate a set not in F. They proved the following theorem.
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THEOREM 2.1. For any E' C E define I[(E')and u(E’) to be the smallest and
largest cardinality, respectively, of a mazimal (with respect to inclusion) independent
set contained in E'. Let r(E,F) = minEng%%. Then the greedy solution is an
r(E, F)-approrimation; that is, the value of the greedy solution is at least r(E,F)
times the optimal value.

Now consider a game of the following type: You choose a maximal independent
set in E. An adversary then selects a bound p on the allowed number of elements.
Last, you output the p heaviest elements of your solution (or the solution itself if p is
greater or equal to its cardinality). By the definition of an independence system, the
output is independent. Your payoff is the ratio between the weight of your output
and the maximum weight of an independent set whose cardinality is at most p. A
solution is a-robust if it guarantees a payoff of at least c.

THEOREM 2.2. The greedy solution is r(E, F)-robust.

Proof. Define (E, F,) to be the independence system in which F' € F,, if and only
if F € F and |F| < p. Let I, and u, denote the | and u values in the new system,
respectively. Then for every E' C E

L,(E") _ miu(l(E’), p) S I(E")
wp(B) ~ min(u(E),p) > u(B)

so that r(E, F,) > r(E, F) and the claim follows from Theorem 2.1. a

The edges and matchings in a graph constitute an independence system for which
r = 1 [1]. It follows that the greedy solution is -robust. We will reach this conclusion
later in a different way but not before we obtain stronger results in the next section.

2.1. Weighted robustness. Let ¢ > ¢ > --- > ¢, > 0 be given constants.
For an independent set F' = {ej, ..., e, } with weights w;, wa, ..., w,,, define C(F) =
Z;n___l c;wj. Since we are interested in obtaining large values of C(F’), we will assume
that the elements are numbered so that wy > wg > --- > wy,. Thus, C(F) is well
defined for any set F' without explicitly specifying an order on its elements. We will
also denote F), = {e1,...,ep,}, p=1,...,m, and F, = F for p > m.

PrROBLEM 2.3. Compute an independent set F € F of cardinality |F| < p that
mazimizes C(Fp).

The following theorem was proved by Gerhard Woeginger.

THEOREM 2.4. Problem 2.3 is NP-hard even when F is the set of matchings in a
graph with edge set E (so that F C E is in F if it consists of vertez-disjoint edges).

Proof. The reduction is from the following NP-complete variant of 3-PARTITION.

Input: A positive integer t. 2n positive integers a3, aq, ..., az, and n positive integers
b1,b2,...,b,. These integers fulfill the equation }:1221 a; + E?:l b; = nt. Moreover,
a; <tand b; <t holds for all .. These 3n integers are encoded in unary.

Question: Does there exist a permutation n of {1,...,2n} such that for all i =
L,...,n we have ar(2;—1) + Qr(2;) + b = 17

Consider an instance I of 3-PARTITION. For i = 1,...,n we define the cost
coefficient ¢; = nb. Moreover, we construct from I an edge-weighted complete graph
G on 2n vertices vy, ..., V2,. The weight w(v;,v;) of the edge between vertices v; and
v; equals

w(v;,v;) = n? —n%¥4H >0,
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All these weights and costs are encoded in binary. Then the length of the encoding of
every such value is bounded by 2t log n, which is polynomial in the size of the instance
I (which is encoded in unary). We claim that G has a matching F' of n independent
edges with

n
C(F) > nZthb‘ —nttl = T

if and only if the instance I of 3-PARTITION has answer YES.

(If) Consider a solution 7 of 3-PARTITION. For ¢ = 1,...,n the matching F
matches vertex vp(;—1) with vertex vy (o; and assigns the cost coefficient ¢; to this
edge. Hence this edge contributes n?*nb — n! to the objective value, and the claim
follows.

(Only if) Consider a matching F’ with the desired objective value. Fori =1,...,n
let (vr(2i-1), Ur(2s)) denote the edge that is assigned to the cost coefficient ¢; = nb:.
We claim that 7 constitutes a solution to the 3-PARTITION instance. Otherwise,
there exists an index i with ar(;_1) + @r(25y + b; > ¢t + 1. The contribution of this
coefficient is then < n%n? —n!+1. The contribution of every other coefficient ¢; is at
most n% (n?* — n). We can never reach an objective value T*. a

THEOREM 2.5. Let F' and F' be independent sets. If F' is a-robust, then C(F}) >
aC(Fy,) for every p=1,2,...n and any constants ¢; > ¢z > --- > ¢y > 0.

Proof. Let wy > wy > -+ > wy, and w) > wh > --- > w,, be the weights of the
elements of F}, and F}, respectively. (If |F| < p, then define w; = 0 for j > |F|.)
Then

14
C(F)) = cw]

i=1
p—1

= Z (¢ ‘CJ+1)Z“J +‘3pr
j=1
p—1

=Y (65 — )W (E)) + ;W (F)
=1
p—1

Z (Cj - Cj+1)aW(F_‘7') + cpaW(Fp)
j=1

=a) cw; =aC(F). [
i=1

3. Robust matchings. A matching is a set of vertex-disjoint edges. The weight
of a matching is the total weight of its edges. A maximum matching is a matching with
maximum weight. A p-matching is a matching with p edges. We denote m = [ %],
the maximuin number of edges in a matching. An m-matching is said to be perfect.
Note that this extends the common use of this concept to the case where the graph
has an odd number of vertices.

An easy way to produce a maximum p-matching is as follows: Extend G by adding
to it n — 2p vertices. Each new vertex is connected to each original vertex by an edge
with a “large” weight, say, twice the largest weight in G. Now compute a maximum
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perfect matching (with n — p edges) in the extended graph. It will be composed of
n — 2p heavy new edges and a maximum p-matching in G.

For a perfect matching M we define M, to be the set of its p heaviest edges,
p=1,...,m. We denote by M) a maximum p-matching. A matching is a-robust if

W(M,) > aW(M®P) p=1,...,m.
In this section, we show that for every graph there exists a %-robust matching and

that it can be constructed by a single application of a maximum matching algorithm.
The following example shows that the value of % cannot be increased.

Consider a 4-vertex graph with weights w(1,2) = w(3,4) = 1, w(2,3) = v/2, and
all other edges have zero weight. For this graph W (M) = v/2 and W(M,) = 2. The
graph has three perfect matchings and none is a-robust for a > % The matchings

{(1,2),(3,4)} and {(2,3),(1,4)} are —\}—i-robust, and {(1,3),(2,4)} is O-robust.
THEOREM 3.1. Let S be a mazimum perfect matching with respect to the squared
weights w?(e), e € E. S is %-'r‘obust.

The rest of this section is devoted to proving Theorem 3.1. We will prove it by
treating the squared edge weights as variables whose sizes are to be determined in
order to form a contradiction to the theoremm. We will prove that to achieve such
a contradiction we may make several assumptions on these variables. Finally, these
assumptions will lead to the conclusion that the claim is true. _

Consider the set S U M®)_ It consists of a collection of disjoint paths and cycles.
A path may consist of a single edge or it alternates between S and M®). Since S is
perfect, the end edges of the path are from S except possibly one end of one path in
the case of odd n (since in this case there is exactly one vertex that is not incident to
an edge of S). A cycle alternates between S and M(P). We will construct from the

edges of S a p-matching whose weight is at least W<M(P)). Since the weight of this
matching is at most the weight of the p heaviest edges in S, this construction will
prove the theorem.

We choose a p-matching from S as follows: Every edge in SN M is chosen. All
of the edges of S contained in a cycle of SU M) are chosen. From every nontrivial
path (containing more than a single edge) of S U M® we choose all the edges that
belong to S except for the lightest one. There is one exception to the last rule: If
there is a path with only one end edge from S (this happens when n is odd), then we
choose all of the S-edges of this path. The total number of edges selected is equal to
[M®)| = p. It is sufficient to prove that the claimed bound on the ratio of the edge
weights in S and in M ® holds for every such path and cycle.

Consider a nontrivial path P with squared weights z1,y1,Z2,¥2,---, Yr—1,Zr,
where the z values correspond to the edges of S and the y values correspond to
the edges of M(P) in the order they appear on P.

We denote z; j; = Z{m xy, and similarly yy; ;1 = Z{___Z y. We are interested in
subpaths P; ; of P consisting of the edges whose weights are z;,y;,...,y;-1, ;. Note
that P = P;,. Since S is maximum with respect to the squared weights,

(3.1) Thij) 2 Yg-y 1S1<JsT

Let iy = min{z; | i =1,...,7r}. Our goal is to prove that the ratio of the total
weight of the » — 1 heaviest edges in P NS to the weight of P N M}, is at least %;
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that is,

7 - 22‘:1 \/z:_ v Tmin > _]-_
SV V2

for all z,y that satisfy (3.1).
We will prove that Z > % for every nontrivial path by induction on r. Note that

the proof and induction hypothesis apply to any nontrivial path P in S U M®) not
just to maximal (with respect to inclusion) paths. A subpath is subject to additional
coustraints arising from longer subpaths that contain it, but these constraints may
increase only the lower bound on Z for the subpath in question. We first prove this
property for r = 2 and r = 3.

LEMMA 3.2. Z > ——\}3 when r = 2.

Proof. Without loss of generality we can assume that x; > 3; thus Z = %,
and we look for its minimum subject to £, + x5 > y; and z; > z4. This minimum is

obtained when z; = z; = % and its value is \/iﬁ a

LEMMA 3.3. Z > % when r = 3.

Proof. In this case z, appears in every constraint of (3.1), and thus Z can be
minimized with x5 > x,,x3. Without loss of generality we assume that 23 = zi, so
that Z = i\/i__—ii—‘/\/i__f We minimize Z subject to (3.1) and z3 > z1 > z3. If 1 > Zyin,
then, by concavity of the square root function, Z can be reduced by decreasing z;
and increasing z;. Thus we assume r1 = T3 = Zpin. Again by concavity, Z can be
decreased by increasing z5 and simultaneously decreasing x; and x3. This change is
feasible if 21 + 29 + 23 > y1 + y2. Thus we assume equality in this constraint, that is,
2x1 + 9 = Y1 + y2. We now show that the claimed bound holds even for the relaxed
problem of minimizing Z subject to ouly 2z 4+ x5 = y; +y, and 23 > 27 > 0. Suppose
first that y; and y, are fixed and we minimize over x; and z3. The feasible set of
solutions is a convex polyhedron and the objective function, \/z1 + /x5, is concave.
Thus the minimum value is attained at an extreme point of the feasible set. There are

2\/:;—— 11v2

two such points. In one, z; = x5 = ﬂ—';—'ﬂ and Z = ek In the other one, x;1 = 0
and zo = y1 + Y9, giving Z = -\/—_ZL——MZ_Z, which is clearly smaller than the former case
and attains its minimum over y; and y2 when y; = y2 and Z = \/LE ]

We now proceed to proving the general step of the induction for r > 3. Thus, we
assume that the claim holds for smaller r values.

LEMMA 3.4. We can assume that ; > Tmin j =2,...,7 — 1.

Proof. Suppose that «; = Zmin for some j € {2,...,r — 1}. Then

e VB ) (Sl /5 )
) I+ Y

>m'1n{ £=1\/E“\/537n_ir: Z:__.]\/:T::—\/m}
B wm D Yo uw

Since z; = min{z; | ¢ = 1,...,j} = min{z; | ¢ = j,...,r}, it follows from the
induction hypothesis that Z > % ]

VA

We call a subpath P; ; for which z(; j; = yy; j-1) tight.
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LEMMA 3.5. (i) Leti < k < j <l suchthati<jandk <l Ifk <j and both
P;; and Py are tight, then so is Py ;. (ii) Let © < j < l. If P;; is tight, then Pj; is
not.

Proof. (i) By assumption, zj; ;) = y[;,j—1) and Tk = Yjg,1~1]- Summing these
equations we get

Tyt Te,j] = Zlig) T Tk = Yiig-1 1 Yki-1 = Y1 T Ykg-1)-

Since T3 2 Ypi1-1) and Tjg ;] > Yik,j—1) it follows that both of the latter relations
satisfy equality and the respective subpaths are tight.

(ii) From the same equation with j = k it follows that z; =0 and 1 < j < r, in
contrast to Lemma 3.4. ad

Suppose that r > 3. Let 1 < j < r. We can assume that there exists a tight
interval containing the edge ¢; whose weight is z;; otherwise, we reduce x; until some
subinterval containing e; becomes tight, and this change reduces Z. Consider the
intersection of all tight intervals containing ¢; € S. It follows from Lemma 3.5 that
the intersection is a nontrivial tight subpath. Again by this lemma, the z values in
this subpath share the same set of tight subpaths, and therefore we can assume that
the sum of their squared roots is minimized subject to a single constraint on their
sum. By concavity of the square root function, this objective is attained by setting
all of these values to 0 except for a single one, say zx > 0. From Lemma 3.4 and
since Tmin > 0, it follows that k£ < 4. For r < 3, the claim has already been proved
in Lemmas 3.2 and 3.3. Suppose that r = 4; then it must be that Pi; and P34 are
tight, and thus z; = x4 = y» =0, y; = x2, and y3 = r3. In this case Z = 1, and this
completes the proof for paths with two ends from S.

For a path with only one end edge from S we can assume that a fictitious S-edge
of zero weight is added at that end. The set of constraints (3.1) then extends in a
natural way, and the same proof holds.

Now suppose that there is a cycle C that contradicts the claim. We will show
how to construct an instance consisting of a path that contradicts the claim. Since
we have already proved that this is impossible, it will follow that such a cycle cannot
exist. Specifically, let the cycle’s edges have weights z1,y1,..., %, y-, in this order,
with the z-weights corresponding to edges of S. Form a path by concatenating many
repetitions of this sequence of weights. Last, add an z-edge at the end where it is
missing, with a sufficiently large weight, such as W (CNM (), so that (3.1) is satisfied.
The path obtained this way will have (asymptotically, as the number of pasted copies
increases) the same Z-value as C. This concludes the proof of Theorem 3.1.

3.1. More robustness results. Most of the proof of Theorem 3.1 is valid for
any concave function, not just the square root function. Using this observation, the
theorem can be generalized as follows. Let S, be a maximum perfect matching with
respect to the weights wb(e), e € E, where b > 1 is a constant. Let g = %. The
following lemmas and theorem follow easily by adapting the proofs of the respective
results obtained in the previous subsection for 8 = %

LEMMA 3.6. Z > 2—1/; when r = 2. '

LEMMA 3.7. Z > 51— whenr = 3.

THEOREM 3.8. S, is min{ 5z, 57— } -robust.

Maximum robustness is obtained when § = %, the case to which Theorem 3.1
applies. We note two interesting extreme cases. When b = g = 1, S}, is just a matching
of maximum weight. When b — oo and thus f — 0, we get a greedy matching. Such
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a matching is obtained by sorting the edge weights in nonincreasing order, and then
scanning the list and adding an edge to the matching if it is disjoint to the previously
selected edges. In both cases the resulting bound is %, giving the following corollary.

COROLLARY 3.9. Mazimum and greedy matchings are %—robust.

4. Clustering. In the METRIC MAXIMUM CLUSTERING PROBLEM WITH GIVEN
CLUSTER SIZES, the goal is to partition the vertex set V into sets (“clusters”) of given
sizes so that the total weight of edges inside the clusters is maximized. Specifically,
the input for the problem consists of a complete graph with edge weights satisfying the
triangle inequality and cluster sizes ¢; > ¢c3 > --- > ¢, > 1 such that ¢; +---+¢, = n.
We want to partition V into clusters of these sizes maximizing their total weight.

Let d; = [#], Dj =di+---+d; j =1,...,p, and Dy = 0. We propose the
following algorithm.

ALGORITHM 4.1.

1. Compute a mazimum matching S with respect to the squared weights. Let
S = {(uj,v;) j =1,...,m}, where w(uj,v;) > w(tjy1,vj41) 4 = 1,...,m—1.

2. Set% Z{Uj,’l)j ‘ j—_—Di_l +1,,D1} 1= 1,...,p.

3. For each i such that ¢; is odd, add to V; an arbitrary yet unassigned vertez.

THEOREM 4.2. Let opt and apx denote the solution values of the optimal and
approximate solutions, respectively. Then

1
apr > ——=o0pt.

2V/2

Proof. Consider an optimal partition Oy, ..., O0,. Let M, be a maximum matching
in the subgraph induced by O;, i« = 1,...,p. Denote the edge weights in M; by
wi > > wfii.

Let b; = ¢; — 1 if ¢; is even and b; = ¢; if ¢; is odd. The edges E(O;) can be
covered by a set of b; < ¢; disjoint matchings. Since M; is a maximum matching in
G, it follows that b;W(M;) > W(E(O;)) and therefore

P
opt < Z(,lW(MI)
i=1

Let Vi,..., V], be the partition produced by Algorithm 4.1. Let S; = SN E(V;).
Consider a cluster V; with vertices u,v,q € V; such that (u,v) € S;. By the triangle
inequality, w(u, ¢) +w(v, q) > w(u,v).

Suppose that ¢; is even. Sum this inequality over all ¢ # u,v € V;; then sum
again over (u,v) € S;. Note that every edge in E(V;) \ S; is summed twice. Thus,
every edge (u,v) € S; contributes to the total weight of E(V;) in addition to its own
weight also at least %(cz — 2) times its weight through the edges incident to it. Thus,
W(E(Vi)) 2 5¢:W(S5). |

Suppose now that ¢; is odd. In this case V; contains a vertex, say v;, that was
added to V; in step 3 of the algorithin. In the summation, the weight of edges incident
to v; is used just once. Thus, each edge (u,v) € S; contributes its weight % (c; — 3)
times when summed over V;\ {u, v, v;}, once more through w(u, v;)+w(v, v;), and once
when it contributes its own weight. Thus, also in this case, W(E(V;)) > 3¢, W (S;).

By Theorem 2.5 and the assumption ¢; > --- > ¢,
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12
apr > = ZciW(Si)

=1

o

g
——opt

> a

2v/2
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