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1. Introduction

Let G = (VE) be a complete graph with node set
V and edge set E. For (u,v) € E let w(u,v) 2 0
be its weight. Assume that |V| = n = 4k for some
integer k. A packing of 3-edge paths is a set of k
node-disjoint paths of three edges (and thus four
nodes) each. The subject of this note is the prob-
lem of computing a packing of 3-edge paths with
maximum total edge weight. The problem is NP-
hard [5].

The problem is a special case of the general set
packing problem considered in [1,2] and the general
results there imply a % bound on the performance ra-
tio. In this note we prove that a simple algorithm guar-
antees a bound of %. We also present related observa-
tions on the maximum symmetric traveling salesman
problem (Max_TSP).
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! Email: shlom@math.tau.ac.il.

2. Max packing of 3-edge paths

We start by considering a more general problem.
Suppose we want to partition V into k node-disjoint
paths with ¢, . . ., ¢, edges respectively, of maximum
weight (where n = k+)_ ¢;). The following algorithm
guarantees a factor of a(1 — k/n), where a is the
performance guarantee available for solving Max_TSP.
The algorithm of Fisher, Nemhauser and Wolsey [3]
gives a = 2 and an improved bound has recently been
obtained by Kosaraju, Park and Stein [7].

e Approximate Max_TSP with factor a. Let the edges
in this solution be e, ..., e, in this cyclic order.

e Foreveryi=1,...,n: Construct a solutionin which
the jth path (j = 1,...,k) consists of the edges
eiij)s - - + » €r(i.j)» Where indices are mod n, I(i, j) =
i+ci+ - +cjo1+j.and r(i, j) =1(i,j) +c;~ 1.

e QOutput the solution with maximum total edge
weight among the n solutions computed above.

The stated bound results from the following observa-

tions. The n solutions constructed by the procedure

use each edge of the tour exactly n — k times, so that
the average solution has weight (n — k) /n=1-k/n
of the tour’s weight. The weight of the maximal of
these solutions is at least as that of the average one.
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Fig. 1. Classification of OPT and partition of OPT\ M1.

Finally, the solution to Max_TSP is an upper bound
on the solution of the 3-edge paths packing problem.

In the 3-edge paths packing problem, we have k =
%n so that the bound resulting from the above method
is %a < %. We will now suggest a different approach
with a 3 bound. We will denote by OPT an optimal
solution and by opt its weight. Similarly, APX is an
approximate solution and apx its weight.

We suggest the following algorithm.

e Compute in G a maximum weight perfect matching
Ml.

e Form a complete graph G' = (V',E’'). The
nodes of V’ correspond to the edges of M.
The weight of (u,0) € E’, where u corre-
sponds to (a,,b,) € M1 and v corresponds
to (a,,b,) € M1, is defined as w'(u,v) =
max{w(a.,. ay).w(ay, by), w(by, ay), w(by, bv)}

e Compute a maximum weight perfect matching in
G'. Let M2 be the edges corresponding to this
matching (through the definition of w') in G.

o Output APX = M1 UM2,

Theorem 1. apx > 3opt.

Proof. Partition OPT into four classes according to
its intersection with M1, as described in Fig. 1.

We will now describe a process that constructs three
matchings S, T and M with the following properties:
(1) 8, T partition OPT\ M1.

(2) Each edge of T is adjacent to two edges of M1\
OPT.

(3) M C S corresponds to a matching in G’.

(4) w(M) > iw(S).

We start the construction process with the initial
sets S, T as follows (see Fig. 1):

I- and II-paths: Assign the middle edge to S and the
other edges to T.

III-paths: Assign both edges to S.

IV-paths: Assign the edge to S.

Consider now the subgraph H = (Y SU M1) of G.
Since both S and M1 are matchings in G, H consists
of a collection of node-disjoint paths and simple cy-
cles.

Define the S-length of a path in H as the number of
S-edges it contains, Call a path (or a cycle) odd if its
S-length is odd. Otherwise, call it even. We observe
that edges from II- and IV-paths are not contained in
any cycle of H while each IIl-path contributes 2 to the
S-length of each cycle or path component in H that
intersects it.

We will describe now how odd cycles can be elimi-
nated from H by changing the way S and T edges are
defined for some I-paths. Suppose that H contains an
odd cycle C. Since a III-path contributes 2 S-edges
to at most one cycle that intersects it, C must con-
tain an S-edge, say s, from a I-path. We now modify
the sets S and T by moving the middle edge of this
I-path to T and its end edges to S. A new odd cycle
may be formed from the union of C \ {5} and an odd
path. Fig. 2 illustrates such a case. However, as we
observed, the odd path contains an S-edge from a I-
path. The process is repeated with that edge. After a
finite number of steps, the odd cycle is eliminated. We
repeat this process for each odd cycle in H.

We now form the edge set M C § satisfying prop-
erty (4).
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An odd cycle and an odd path

Resulting new odd cycle

Fig. 2. Elimination of odd cycles.

Consider an even cycle in H. Its edges alternate
between M1 and S. The edges of S in this cycle can
be decomposed (alternately according to their order
in the cycle) into two disjoint subsets, such that each
subset forms with the edges of M1 in this cycle a set
of 3-edge paths. We assign to M the subset of higher
total weight.

Similarly, the edges of a path in H alternate between
M1 and S, with its end edges belonging to M1. Its
S-edges can be partitioned into two disjoint subsets
each forming with M1 edges sets of 3-edge paths. We
assign to M the subset of higher total weight. We end
up with a subset M C S satisfying property (4) and
since M2 is an edge set of maximum weight of this
type, it follows that also

w(M2) > 3w(S). (1)

We consider now the final partition §,7 as con-
structed above. Each T-edge is adjacent to two edges
of M1\ OPT. 1t follows that the weight of M1\ OPT
is at least as that of T, since otherwise replacing M1\
OPT by T will give a matching of weight greater than
w(M1). Thus,

w(M1\ OPT) > w(T). (2)

Since the S-edges are node-disjoint they form a (not
necessarily perfect) matching. By the optimality of
M1 (and non-negativity of the weights),

w(M1) = w(S). (3)
From (1), (2), (3), and a trivial identity, we obtain

4w(M2) = 2w(S),

3w(M1\ OPT) > 3w(T),

w(M1) > w(S),

3w(M1 NOPT) =3w(M1NOPT).

Summation gives

4apx = 4(w(M1) + w(M2))
23(w(S) +w(T) + w(M1NOPT))
= 3opt,

as claimed. O

Example 2. Consider 8 nodes on a cycle with edge
weights 1,2,1,0,1,2,1,0 in this cyclic order, and all the
edges not on the cycle are of zero weight. Clearly,
opt = 8. A possible choice for M1 is the two edges
of weight 2 and the two edges of weight 0 from the
cycle. In this case M2 consists of two edges of unit
weight. Thus,

apx =w(M1) + w(M2) =4+2=6.

This example demonstrates that the bound of Theo-
rem 1 is tight.
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3. Relation to Max_TSP

We now determine the performance guarantee of
the algorithm we used for packing 3-edge paths when
applied to Max_TSP. Thus, we denote by OPT an op-
timal solution to this problem, and similarly for the
other notation.

We observe that a tour can be covered three times
by four 3-edge paths packings. Thus, an optimal so-
lution to the 3-edge paths packing problem can be
completed to a 3 approximation for Max_TSP. Con-
sequently we obtain as a corollary to Theorem 1 that
w(M1) + w(M2) > 1—96opt. We now strengthen this
result:

Theorem 3. w(M1) + w(M2) > $opt.

Proof. Consider an optimal tour OPT. The edges of
OPT \ M1 form node-disjoint paths, or OPT itself.
Each such path contains at least one edge. It is possible
to partition OPT\ M1 into disjoint subsets S and T so
that the following propetties hold:

(1) The edges of TU (OPTN M1) are node disjoint.
(2) S consists of node disjoint 1-edge and 2-edge

paths.

By the first property and maximality of M1 it follows
that

w(M1\ OPT) > w(T), (4)

since otherwise, by replacing M1\ OPT by T, we get
a matching with a greater weight than M1,

Let Mg be the subset of M1\ OPT of edges that
have at least one end node incident to two S edges
(that is, this end node is a “center” of a 2-edge path
of S-edges). If we contract the edges of Ms (by
identifying their end nodes), the edges of S define
a simple graph with edge set S and maximum node
degree of 4. Moreover, in this graph there are no
edges connecting two nodes whose degree is 4 so
that by a theorem of Fournier [4] (see also {6]),
it is 4-edge colorable. Let M be the set of edges
corresponding to the color class whose total edge
length is maximal. Then, w(M) > iw(S). Now,
each edge in M connects two distinct edges of M1
and the 3-edge paths formed this way are node dis-
joint. Since M2 is a maximum weight subset of
this type also w(M2) > Iw(S). With (4) we ob-
tain

w(M2) 2 1w(s)
= :[w(OPT) — w(M1NOPT) — w(T)]
zﬁ[opt— w(M1NOPT) - w(M1\ OPT)]
= {lopt — w(M1)]1,

or,
Iw(M1) + w(M2) > Lopt. (5)

By assumption n is even, so that OPT can be par-
titioned into two edge-disjoint matchings. Thus,
w(M1) > lopt, or 2w(M1) > 3opt. Adding this
inequality to (5) we get

w(M1) + w(M2) > 3opt. 0O

Example 4. Consider for a positive integer k, a 3k-
node graph with a cycle of 3k edges whose weights are
1,1,2,1,1,2,...incyclic order. All the other weights
are 0. Then, opt = 4k. A maximum matching has a
weight of 2k that can be achieved in several ways.
Suppose that M1 selects the k edges of weight 2 to-
gether with -;-k zero weight edges. Then, M2 cannot
select more than one unit weight edge from each ad-
jacent pair of such edges. Thus, w(M2) = 1k and
w(M1) + w(M2) = 3k. This shows that the bound
proved above is the best possible.

One may consider a natural enhancement of the al-
gorithm. After computing M1 and M2 continue the
process by computing M3, a maximum weight match-
ing of end nodes of the 3-edge paths obtained. Then
compute M4 to match the end nodes of the result-
ing 7-edge paths. The tour is finally constructed from
the union of M1,..., Ml forl =3,...,[logn] + 1.
Note that the +1 relates to a last edge needed to turn
a Hamiltonian path into a cycle. However, the bound
may at best improve to % as can be verified by con-
structing examples with this ratio.

References

[1] E. Arkin and R. Hassin, On local search for weighted k-set
packing, 1996.

[2] V. Bafna, B. Narayanan and R. Ravi, Nonoverlapping
local alignments (weighted independent sets of axis parallel
rectangles), in: Proc. Workshop for Algorithms and Data
Structures (WADS), 1995.



R. Hassin, S. Rubinstein/Information Processing Letters 63 (1997) 63-67 67

{3) M.L. Fisher, G.L. Nemhauser and L.A. Wolsey, An analysis
of approximations for finding a maximum weight Hamiltonian
circuit, Oper. Res. 27 (1979) 799-809.

[4] 1.C. Foumier, Colorations des arétes d'un graphe, Cahiers
Centre Ewdes Rech. Opér. 15 (1973) 311-314.

[5] MR. Garey and D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness (Freeman, San
Francisco, 1978).

[6]) TR. Jensen and B. Toft, Graph Coloring Problems (Wiley,
New York, 1995).

[7] C. Stein, Private communication, May 1997.



