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Abstract

The GENERALIZED MAXIMUM LINEAR ARRANGEMENT PROBLEM is to compute for a given vector x € R" and ann x n
non-negative symmetric matrix W = (w;, ;), a permutation 7 of {1, ..., n} that maximizes }_; j Wnmy,mjlxj — xi|. We present a
fast %-approximation algorithm for the problem. We present a randomized approximation algorithm with a better performance

guarantee for the special case where x; =i, i = 1,...,n. Finally, we introduce a %-approximation algorithm for MAX k-
CUT WITH GIVEN SIZES OF PARTS. This matches the bound obtained by Ageev and Sviridenko, but without using linear
programming. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We define the GENERALIZED LINEAR ARRANGE-
MENT PROBLEM as the problem of computing for a
given vector x = (x; < -+ < xp) € R" of ‘points’
and an n X n non-negative symmetric matrix w =
(w;, j) of ‘weights’, a permutation 7 of {1,...,n} so
that }°; ; Wm;,x;1%; — xil is optimized. In an illustra-
tive example, consider 7 linearly ordered points in
which a set of n machines is to be located, and w;
is a measure of association of the ith and jth ma-
chines. Our interest is in the maximization version, the
GENERALIZED MAXIMUM LINEAR ARRANGEMENT
PROBLEM (GMLAP), where the goal is to maximize
Zi,j W, ;1% j — xi|, and keep the machines far from
each other (compare with [10]).
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The special (NP-hard) case in which x; =i is
known as the LINEAR ARRANGEMENT PROBLEM and
an O(logn)-approximation for the minimization ver-
sion is given in [9] (see also [6]). The minimiza-
tion version is polynomially solvable if we are al-
lowed to locate several elements (or none) at any point,
even when some of the locations are already predeter-
mined [8].

Another interesting (also, NP-hard) special case of
the problem is MAX CUT PROBLEM WITH GIVEN
SIZES OF PARTS where for some p < n/2, x| =
co+=xp=0and Xp+; = =%, = 1. Ageev and
Sviridenko [2] applied a novel method of rounding
linear programming relaxations and developed a %-
approximation algorithm for this problem. They also
obtained a similar result for a more general MAX k-
CUT PROBLEM in which integers pi, ..., pk are given
and the goal is to compute a k-cut, that is, a partition
Si,oo Sk of (1,...,n}with [Sil=pi, i=1,...,k,
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which maximizes the weight of pairs whose elements
are in different parts of the partition.

The GMLAP is a special case of the MAXIMUM
QUADRATIC ASSIGNMENT PROBLEM which also in-
cludes as special cases fundamental problems like
the MAXIMUM TRAVELING SALESMAN PROBLEM. In
this problem two n x n nonnegative symmetric matri-
ces A = (a;,;) and B = (b; ;) are given and the ob-
jective is to compute a permutation w of {1,...,n} so
that

> anwaipbi

i,jev

iI#]
is maximized. A %-approximation algorithm for this
problem, under the assumption that the values of
one of the matrices satisfy the triangle inequality, is
given in [4]. Of course, this bound applies also to the
GMLAP.

We present a %-approximation algorithm for the
GMLAP. An interesting feature of our algorithm
is that it simultaneously approximates the max cut

_problems with sizes p and » — p of parts for all
possible values of p. We present a randomized %-
approximation for the MAXIMUM LINEAR ARRANGE-
MENT PROBLEM. Finally, we present an alternative
%-approximation for MAX k-CUT PROBLEM WITH
GIVEN SIZES OF PARTS. Unlike the algorithm of
Ageev and Sviridenko, the latter algorithm does not
use linear programming.

We first describe, in Section 2, a generic random-
ized approximation algorithm for MAX CUT WITH
GIVEN SIZES OF PARTS. The analysis of this special
case will be used in Section 3 where we obtain our
main result on the GMLAP. In Section 4 we present
our algorithm for MAXIMUM LINEAR ARRANGE-
MENT and in Section 5 we treat the MAX k-CUT PROB-
LEM WITH GIVEN SIZES OF PARTS.

For disjoint S,7 C V we mean by {i, j} € (5, T)
that eitheri€ Sand je T orje Sandie€T. We

denote

wlS D= Y wij
{i,j}e(S,T)

and

w(i, T)=w({i},T).

We use w(i, V) for w(i, V \ {i}). Finally, we denote
by opt the optimal solution value in the problem under
consideration.

2. MAX CUT WITH GIVEN SIZES OF PARTS

Given an undirected graph G = (V, E) with |V| =
n and edge weights w;, j, {i, j} € E, a cut is a partition
(§,T) of V, and its weight is w(S, T). The problem is
to compute a maximum weight cut such that [S| = p.
Without loss of generality, we assume that p < n/2.

Theorem 1. Let W(S,T) be the expected weight of
the cut returned by Max_Cut (Fig. 1). Then, w(S,T) 2>
opt/3.

Proof. The probability for an edge {i, j} € (P, V\ P)
to be separated by (S, T') is %, since it corresponds to
the event that i is selected to S. The probability for an
edge {i, j} € P x P to be separated by (S, T) is

P 1

> =,

2p—1 2

since it corresponds to the event that exactly one of
i and j is selected. Consider an optimal solution and

denote by OPT the set of size p in it. Let
r=|OPTNP|, s=w(OPTNP,P\OP]),

and
t=w(OPTN P,V \ (OPTU P)).

Max Cut
input
1.Agraph G = (V,E),V={(l,...,n}
with edge weights w; ;, {i, j} € E.
2. An integer p <n/2,

returns

Acut (S, T) such that |S| = p.

begin

P={ll,,12p eViw@iV)Z2w(,V)

Vie P, j¢ Pj}.
Randomly choose p vertices from P to form S.
T:=V\S.
return (S, T).
end Max_Cut

Fig. 1. Algorithm Max Cut.
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OPT P

p — 7 vertices
with w(i,V) <k

— r vertices

2
with (i, V) > &

Fig. 2.

Note that by the definition of P, there is some
threshold k such that w(i, V) is at least k for i € P
and at most k for i € V \ P (see Fig. 2). Also note
that edges with two ends in P are counted twice in
s+ 2 iepyopr Wi, V) so that

s+ w@i, V)
W(S, T) > ZIEP\40PT + 5

s+Q2p—nrk 1t
2 — 4 -
4 2

A‘

and
opt<(p—r)k+t+s=B.

We note that to compute a minimum possible value for

the ratio A/B given that it can be made smaller than

%, we can assume without loss of generality thatf = 0.

Let s = a(2p — r)k. We now distinguish two cases.
Suppose first that < 1. We use

2p—r

w(S. T)2k(1+ )

and
opt <k((2p —r)(1+a)— p),

so that
v, 1 @p-ni+e)
opt ~ 4Qp-n(+a)—p
This ratio is monotone decreasing in @ so that for the
worst case we substitute = 1 and obtain
w(S, T) 2p—r
opt ~ 2Bp-2r)’
This expression is monotone increasing in 7 and it is

minimized when r = 0, in which case we obtain the
ratio %

begin
Sort V in non-increasing order of w(i, V).
(For simplicity, suppose that
w(l,V) 2. Z2wxn,V))

fori=1,...,p

Assign 2i — 1 to §, with probability %

Assign 2i to S otherwise.
end for

Fig. 3. Modified Max_Cut.

Suppose now that @ > 1. We use the inequalities
s
w(S, T) > —,
(S, T) 5
(since the edges defining s are in P x P) and

2p—r
opt< (p—nk+s< i

s 3
k+s=—+s< s,
20 2

so that
w(s, T) > l .
opt 3

The bound of Theorem 1 is asymptotically achiev-
able: Let G consist of a star with 2p vertices, p — 1
vertex disjoint edges, and isolated vertices. The opti-
mal solution is to choose the center of the star and one
end of each edge to form a set of p vertices. Thus,
opt=3p — 2. We could form P from the 2p vertices
of the star and then W(S, T) = p— % The correspond-
ing ratio is asymptotically %

Algorithm Max Cut is fast and simple, but for our
results in the next section we will use a variation
of it, which is also easier for derandomization (as
we describe in the next section). In this variation we
change the main step of the algorithm as described in
Fig. 3.

Theorem 2. LetW(S, T) be the expected weight of the
partition returned by Max_Cut with the modification
given in Fig. 3. Then,

TS, T) > %”.

Proof. The proof is as in Theorem 1, with P =
{1,...,2p}. Note that the probability for an edge in
(P,V \ P) to be separated by (5,7) is 1, as in
Theorem 1. The probability for an edge {2i — 1, 2i}
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forsomei=1,..., p, to be separated by (S, T) is 1,
and for other edges in P x P this probability is % ]

3. GENERALIZED MAXIMUM LINEAR
ARRANGEMENT

We start by presenting an alternative way to com-
pute the weight of a solution 7 to GMLAP (a similar

representation is used in [8}): Forp=1,...,n— 1let
P n
Cp= Z Z Wr, ;-
i=1 j=p+1

Note that the problem of maximizing C, over all

permutations 7 of {1,...,n} is the max cut problem

with sizes of parts p and n — p. Now we observe that
n—1

D wr g lxj —xil =Y Cplxpr1 — xpl. (1

ij p=1

In other words, the contribution of the interval
[xp, xp41] to the weight of the solution is Cpl|xp4q —
Xp|. Our algorithm Randomized GMLA (Fig. 4) ap-
proximates simultaneously all of these cut problems
with factor % each, and consequently the same bound
applies to the GMLARP instance as well. We note that
the permutation defining the approximate solution is
independent of the vector (X1, ..., Xn).

Theorem 3. Let m be the permutation returned by
Randomized GMLA.

(1) Let Sp = {7'[1, ...,ﬂp}, Tp = {7TP+1, ...,7'[,,}.
Then (Sp, Tp) is a randomized %-approximation
Jor the max cut problem with sizes of parts p and
n—p.

(2) m is a randomized %-approximation Jor the
GMLAP,

Proof. By Theorem 2, forp =1,...,n — 1, the value
of Cp, in the output of the algorithm is a randomized
%-approximation for the respective max cut problem.
The proof for the second part of the theorem follows
now from (1). O

Derandomizing the algorithm is particularly simple.
We apply the ‘method of conditional expectations’
(see [3]). In the first iteration we assign 7y := 1 and
7y := 2. Consider the ith iteration for i > 1. Let
Si—1 and T;—; be the partial permutation that has
already been set in the first i — 1 iterations. We should
set 7; to either 2i — 1 or to 2i, and mp—-;i4+1 to the
other value. This is done so that the expected value
of the solution is maximized given §; and T; and
assuming that the following assignments will be done
according to Randomized GMLA. We observe that the
expected weight gained by the latter assignments is
independent of the current decision. Therefore, the
current assignment should be done in a way that
maximizes the weight of edges connecting the vertices
2i — 1 and 2i to the previously assigned vertices. It

Randomized GMLA

input A non-negative symmetric matrix W = (w;,j, i, j=1,...,n).

returns A permutation 71, ..
begin

. 17 ofV={1,...,n}.

Sort V in non-increasing order of w(i, V),
(For simplicity, suppose that w(1, V) 2 --- 2 w(n, V)))

. ln/2l

fori=1,..

Set 7; :=2i — 1 and Tn—i41 := 2i with probability %
Set m; :=2i and my—i4+; = 2i — 1 otherwise.

Ifn is odd, set T (n+1)/2 = 1.

end for
return 7.
end Randomized GMLA

Fig. 4. Algorithm Randomized GMLA.
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is easy to see that under this rule the algorithm sets
n=2i—1 and Tn—i4+1 := 2i if

w(2i—1, §-1) +w2i, Ti-y)
Sw(2i, §;—1) +w2i—1, T;—y).

It sets 7; := 2i and m,—;i41 := 2i — 1 otherwise. We
call the resulting Algorithm GMLA.

Theorem 4. Let m = |{{i, j}: wi ; > O}. Then, Al-
gorithm GMLA computes a %-appmximation Jor the
GMLAP and for MAX CUT WITH GIVEN SIZES OF
PARTS for every p = 1,...,|n/2] in time O(m +
nlogn).

4. MAXIMUM LINEAR ARRANGEMENT

Recall that the MAXIMUM LINEAR ARRANGE-
MENT PROBLEM is the special case of GMLAP where
x; =i, i =1,...,n. There are simple approximation
algorithm with constant performance guarantees for
this problem. The simplest one relies on the observa-
tion that the average value of |x; — x;| is n/3. There-
fore, the expected weight of a random permutation is
(n/3) 3 ; Wn;,x; which is at least %opt.

A better bound can be obtained as follows. Let
(8, T) be a partition which maximizes

mc= Z Wi, j.
{i,j}e(S.T)

Let ]Tli ..
let 7|5|1+1,--

., 75| be a random permutation of S and
.,7n be a random permutation of 7.

(Alternatively, order the elements i € S in decreasing
order of }_ ;.7 w;,; and order the elements j € T in
increasing order of ) ;.5 wi,j.) Let apx be the weight
of the resulting solution. opt is equal to a sum of
values of a series of n cuts, each bounded by mec.
Thus opt < n - mc. The average ‘distance’ between an
elementin S and in T is n/2. Thus,

_n >1 y
apx = 2mc/zop.

We can use the 0.878-approximation algorithm for
MAX CUT [7] to obtain a 0.439-approximation for our
problem.

We now present a randomized algorithm with a
better performance guarantee (see Fig. 5).

Lemma 5. Consider an optimal solution. The total
contribution to the solution’s weight which comes from
pairs of elements that were placed within distance of
at most n%® from each other is less than —iropt.

Proof. In a random solution, the expected weight be-
tween any pair of elements is n/3. If the total con-
tribution to the solution’s weight which comes from
pairs of elements that were placed within distance of
at most n%% from each other is greater than ,ﬁjopt,
then just the expected contribution of these elements
to the weight of a random solution would be at
least

n/3

708 0.1 %P> oph,

a contradiction. 0O

Max_LA
input A non-negative symmetric matrix W = (w; ;, i,j=1,...,n),
returns A permutation 7 of V ={1,...,n}.
begin

Partition V into subsets S, T by independently assigning eachi € V

with probability % toSorT,

Sort S in non-increasing order of W; = ZjeT w;,; and let Ty, ..., |5

be the corresponding order.

Sort T in non-decreasing order of W; = Zjes w;, j and let 7|S|+1, ..., T

be the corresponding order.
return 7.
end Max LA

Fig. 5. Algorithm Max LA.
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Observation 6. Let S,T be a random partition of
{1,...,n}, as in Max LA (Fig. 5). The expected
contribution to opt coming from pairs of elements that
belong to different parts of the partition is opt/2.

Observation 7. The permutation m computed by
Max_ LA maximizes the contribution to the total weight
coming from pairs of elements that belong to different
parts of the partition S, T under the constraint that the
elements of S are assigned to 1, ...,|S| and those of
TtwlSl+1,...,n

Lemma 8. With probability that exponentially ap-
proaches 1 as a function of n, it is possible to assign
Stol,....|SlandT to |S|+1,...,n, so that the dis-
tance of each element from its relevant end (1 for § or
n for T') differs from its distance in opt from the near-
est end, by at most n%,

Proof. Index the elements according to their distance
in opt from their nearest end, breaking ties arbitrarily.
Assign Stol,...,|S|land T ton,n —1,...,|S]+ 1
in increasing order of the indices. Consider an element
with index k. Its distance from the nearest end in opt is
[(k—1)/2]. Its distance under the above assignment
depends on the number of lower index elements that
were assigned to its part (S or T). Thus, this distance
is a random variable with binomial distribution B(k —
1, -;-). Its mean is (k — 1)/2 and standard deviation
%«/ k — 1. Therefore, using the Normal approximation
of the Binomial distribution, the probability of a
deviation of at least n%¢ from the mean is of order
e™'*/% which is less than e ™"~ since k < n. The
probability that such a deviation will be obtained for
any of the n elements is bounded by ne . o

Theorem 9. Algorithm Max LA (Fig. 5) produces,
with probability that approaches | as a function of n,
a solution of weight 1 — o(1) times the contribution to
opt which comes from elements that belong to different
parts of the partition (S, T).

Proof. By Lemma 8, the distance between any two
points in the solution produced by Max LA is at
least their distance in the optimal solution minus
0O(n%%). By Lemma 5, the relative contribution of
the pairs that are closer than n%8 is asymptotically

0. For elements whose distance in opt is at least
n%38, a relative deviation of n%6/n%8 is asymptotically
zero. Therefore, by Observation 7 and Lemma 8, the
algorithm guarantees almost all of the weight that the
optimal solution has between S and 7. O

Theorem 10. The expected weight of the solution
produced by Max_LA is asymptotically %opt, with
probability that approaches 1 as a function of n.

Proof. Follows from Theorem 9 and Observa-
tion7. 0O

5. MAX k-CUT WITH GIVEN SIZES OF PARTS

Given a graph G = (V, E) with edge weights w and
integers p1, - .., Pk such that )_ p; = n, the MAX k-
CUT WITH GIVEN SIZES OF PARTS is to compute a
k-cut, that is, a partition Sy,..., S¢ of V, such that
ISil = pi, i = 1,...,k, maximizing the weight of
edges whose ends are in different parts of the partition.

A vertex v € V is said to cover the weight of
the edges {{u, v} € E}. A subset V' C V covers the
weight of the union of edges which have at least
one end in it. Bar-Yehuda [5] developed an O(n?) 2-
approximation algorithm for the following problem:
Given w, compute a vertex set of minimum size that
covers edge weight of size at least w.

One can obtain from this result, in a straightforward
way, a solution to the following problem: Given p <
sn find a set §” of 2p vertices that covers edge weight
of at least w(p), where w(p) is the maximum edge
weight that can be covered by p vertices. To achieve
this goal we apply binary search over [0, w(E)], where
w(E) is the total weight of E. For each test value, w,
we apply Bar-Yehuda’s algorithm and we stop with the
highest value for which the algorithm returns a set S’
with at most 2p vertices. If the set contains less than
2p vertices we extend it by adding arbitrary vertices.
The complexity of this procedure is O(n?logw(E)).

Our algorithm for the case of K = 2 (MAX CUT
WITH GIVEN SIZES OF PARTS) proceeds as follows:
Randomly select p vertices from S’ and move them
to the other side of the cut. Let the resulting set
be 54. We claim that the expected size of the cut
(Sa,V \ Sa) is a }-approximation for the problem.
The argument is that the weight of the edges covered
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by S’ is an upper bound on the optimal solution
value, and each of these edges will be in the cut with
probability % The algorithm can be derandomized
by applying the ‘method of conditional expectations’
(see [3]). However, the rounding method of Ageev
and Sviridenko can also be used to obtain a %-
approximation in deterministic linear time, once S’ is
given [1].

Ageev and Sviridenko [2] also applied their method
to obtain a %-approximation for the MAX k-CUT
PROBLEM WITH GIVEN PARTS.

Our algorithm can be modified for the max k-cut
problem as well: We first observe that if p; < In
for every i = 1,...,k then the cut contains more
than half of the edges so that a random solution has
expected weight of at least half the total weight of the
graph. Thus a random solution suffices to obtain a 1-
approximation.

Assume now that p; > n/2. We compute as above
sets S’ and S4 with p=n— p;. Weset P, =V \
Sa and arbitrarily partition S4 to form P,..., Py.
The resulting k-cut has the property that the expected
weight of edges between P; and the other parts
is already half the weight of the edges covered by
S" which is itself an upper bound on the optimal
solution. Thus the k-cut we constructed is a %-
approximation for the problem. Again, the algorithm
can be derandomized.
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