ELSEVIER

Operations Research Letters 21 (1997) 133-137

i

Approximation algorithms for maximum dispersion

Refael Hassin*, Shlomi Rubinstein, Arie Tamir

Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Ramat Aviv,
Tel-Aviv 69978, Israel

Received 1 November 1995; revised 1 May 1997

Abstract

We describe approximation algorithms with bounded performance guarantees for the following problem: A graph is given
with edge weights satisfying the triangle inequality, together with two numbers £ and p. Find k disjoint subsets of p vertices
each, so that the total weight of edges within subsets is maximized. ©) 1997 Elsevier Science B.V.

Keywords: Approximation algorithms; Maximum dispersion; Facility location

1. Introduction

Given is an undirected complete graph G = (V,E),
with a vertex set ¥'= {1y, v,...,0,}. Each edge (v;, v;)
is associated with a nonnegative weight w(v;,v;). It
is assumed that the edge weights satisfy the triangle
inequality. For a subset ¥/ C ¥ we denote by E(V’)
the set of edges in the complete subgraph induced
by V.

Given pe{2,...,n}, and kel,...,|n/p|, we
consider the problem of finding & disjoint subsets
P,....,P. of V, with |P| = p, i =1,...,k, such that
S e yyeEm) WX ¥) is maximized.

This problem and some varnations of it, with
k =1, are the subject of recent papers by Tamir
[11,12), Ravi et al. [10] and Ghosh [7]. In particular,
[10] contains an algorithm for obtaining approxima-
tions for the case k= 1. The algorithm can be executed
in O(n?) time. The authors provide a relatively com-

* Corresponding author. E-mail: hassin@math.tau.ac.il.

0167-6377/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved

PITS0167-6377(97)00034-5

plex proof to show that the approximate solution’s
weight is at least § of the maximum possible weight.
They also provide an example where the actual ratio is
asymptotically % The question of whether the bound
of 1 is tight or not remains open. Feo and Khellaf
[4] presented an approximation algorithm with a per-
formance guarantee of } for the case in which |V|=
kp, i.e., the problem is of partitioning ¥ into sets of
size p.

In this note, we generalize the results of Feo and
Khellaf [4]. We present an algorithm with a perfor-
mance guarantee of 1 for any k€ {1,...,||V|/pl}.
For the case k =1 we present a second algorithm that
achieves the same bound but with a lower time com-
plexity.

Chandra and Halldérsson [3] provide approxima-
tion algorithms for several dispersion problems. In
particular, they consider the remote star problem in
which one wants to find a subset of vertices P, |P|=p,
maximizing minsep Y cp W(x,). They prove that
our first algorithm, with k = 1, has a } performance
guarantee also for the remote star problem.

134 R. Hassin et al. | Operations Research Letters 21 (1997) 133-137

Kortsarz and Peleg [9] consider the case £ =1 with-
out the triangle inequality, and present a polynomial
algorithm with a performance guarantee of O(n?-3885),
More recently, Asahiro et al. [1] analyze an algorithm
for the case k = 1 without the triangle inequality, that
greedily removes vertices from the graph. Its perfor-
mance is particularly good when p is large, e.g., g
when p =n/2.

2. The first algorithm

For a subset V'CV let W(V') =3, , e
w(v;,v;) be the total edge weight in the subgraph in-
duced by ¥’ andlet W (V') =2W(V")/([V'|{(|V'|-1))
be the average edge weight in this subgraph. For a
subset of edges E' let W(E') = 3_, \cp W(Vis 1))
and let W(E') = W(E')/|E'| be the average edge
weight in E’.

A g-matching is a set of g vertex-disjoint
edges. A maximum g-matching has maximum total
weight.

The first algorithm:

¢ Compute a maximum g-matching M* in G, where
g = k| p/2]. Let V* be the set of vertices of the
edges in M*.

o Arbitrarily partition M* into k subsets, M,..., M;
with | p/2]| edges each. Let P,.. ., Py be the vertices
incident with these sets, respectively.

o If pis odd, complete the solution by adding an ar-
bitrary (distinct) vertex from ¥\ V* to each subset.
Let APX be the output of the algorithm. Let OPT

be an optimal solution consisting of subsets Oy, ..., Ok

of size p each. Let W(OPT) and W(APX) be the
respective solution values.

Lemma 2.1. Let V' be a subset of vertices, |V'| = 2gq,
and let M*(V') be a maximum g-matching on V'.
Then, W(V') < W(M*(V")).

Proof. The average weight of a g-matching on V"’ is
g times the average weight of an edge in the graph
induced by ¥V’ since each such edge participates in
the same number of g-matchings. Hence, the weight
of a maximum g-matching is greater than or equal
to gW (V') and the average weight of an edge in a
maximum g-matching satisfies the claim. O

Theorem 2.2. (2 — 1/[p/2])W(APX) > W(OPT).

Proof. Consider an edge (u,v) € M* whose vertices
were assigned to a subset P, in APX. Then, by the
triangle inequality, for every x € P\ {u,v},

w(u,v) < w(u,x) + w(v,x).

Summing over all x € P,\{u,v} we get

(P—2wu) < D (Wwx)+wx). (1)
x€P\{u,v}

Suppose, first that, p is even. Then, each x€ P is
incident to an edge in M * and every edge in E(P,)\M*
is adjacent to two edges of M*. Summing (1) over
M* we get

(p—2)W(M™) < 2W(APX) — W(M™)),

or
%W(APX) > W(M™). (2)

Consider now the case where p is odd. Let y; be
the vertex added to P, by the last step of the algorithm.
Then, by the triangle inequality, for each (u,v) € M;,

w(yi,u) + w(y;,v) = w(u,v).

Summing over all (u,v) € M; we get
Y w(yiu) = WM.

u€P\{y}

Summing (1) over M* and noting that edges incident
to y; participate in this surmmation exactly once, we
obtain

(p = 2)W(M™) < 2(W(APX) — W(M™))

k
*Z Z w(yi, u)

i=1 ueP\{y:}
< AW(APX)-W(M*))-W(M™),

or

—2_W(APX) > W(M). 3)
p+1

Consider now OPT. For every subset O; in OPT
let N; be a maximum weight | p/2 |-matching of its

R Hassin et al. | Operations Research Letters 21 (1997) 133-137 135

vertices. Let N = Uf:x N;. Note that N is a k| p/2]-
matching in G and, therefore,

W(N)< W(M™).

By Lemma 2.1, #(N;) > W(O;) fori=1,...,k. Since
all the sets O, have the same size p, it also follows that

k
W(OPT) = > W(O)

i=1

k
- Z EQ?—L)W(O‘.)

i=]

p(p—1)
N,
2. Doy
_F®) p(p-1)
lp/2] 2
< W(M*) p(p—1)
| p/2} 2

If p is even, we use (2) to obtain
1
W(OPT) <2 (l - —I;) W (APX).
If p is odd, we use (3) to obtain
1
WOPT)<2{1- ——) W(APX). a
(OPT) (— 1) (APX)

Remark 2.3. The bound is tight even for k =1. For
every even integer p consider an instance with ¥ =WU
V> such that | V3| =|¥:| = p, all the edges induced by ¥;
have weight 2, ¥ contains a perfect matching of edges
of weight 2, and all the other edges are of weight 1.
An optimal solution is ¥; with average weight of 2.
The perfect matching of edges in V5 with weight 2
could be selected by the algorithm, and in this case
APX = V; has an average weight of p/(p ~ 1).

Remark 2.4. A maximum matching in a graph with
n vertices and m edges can be computed in time
O(n*) [5]. For sparse graphs a better bound of
O(nm + n? log n) is achieved in [6].

The running time of the algorithm is dominated by
the computation of a maximum g-matching during
the first step. We now describe how this computa-
tion can be done using a maximum matching algo-
rithm. We extend the graph by adding » — 2q new
vertices and connecting each of the new vertices to
each of the original ones by a ‘heavy edge’ of weight
K =W(V)+ 1. The edges between new vertices have
zero weight. Now compute a maximum matching. It
will certainly use n— 24 heavy edges of weight K each
and in addition a maximum weight matching on the
original graph of exactly g edges. The time complexity
is O(n®).

A reduction in the complexity is also possible. Us-
ing the algorithm in [2], we can delete in O(n?) time
all but the 2¢g — 1 highest weight edges incident with
each vertex. Clearly, there exists a maximum match-
ing consisting of g edges from the remaining set.
Let the new vertices be uy,...,u,_2,. Generate heavy
edges (v;,u;) fori=1,...,n — 2q and also (v;,u;) for
i=n—2gq+1,...,nand j=1,...,n — 2q. Again, any
matching of g edges in ¥ can be completed to a per-
fect matching on the extended graph by adding n —2g
heavy edges. Therefore, the structure of a maximum
matching will be as before. Due to the smaller num-
ber of edges in the graph, the complexity reduces to
O(n?(kp + log n)) (using Remark 2.4).

Remark 2.5. As Remark 2.3 shows, the bound of
Theorem 2.2 is tight even when the edge weights have
only two distinct values. However, in this case the ap-
proximation can be obtained through an application of
a maximum cardinality matching algorithm,

3. The second algorithm

We now describe for the case k=1, a faster
algorithm with the same asymptotic performance
guarantee.

o SetS:=0.

o Repeat | p/2| times: Let w(v;, v;) = max{w(v, v,)|
(vk,v2) EE}. Set S:=S U {v;,v;}. Delete from E
the edges incident with v; or with v;.

e If pis odd, add to S an arbitrary vertex.

Let GR be the output of the algorithm and, as before,
let OPT be an optimal solution.

136 R. Hassin et al. | Operations Research Letters 21 (1997) 133-137

Remark 3.1. The aigorithm determines a greedy so-
lution for the maximum weight matching problem on
G. It is well known that the weight of this solution is at
least half the weight of a maximum weight matching
[8]. 1t easily follows from the proof of Theorem 2.2
that W(GR) > W(OPT)/4. We will show, however,
that a stronger result holds.

Theorem 3.2. W(GR) = W(OPT)/2.

Proof. The proofis by induction on p. The theorem is
trivially true when p < 2. Suppose it is true for p — 2
and we will now prove it for p.

Let OPT, (GR,) be an optimal (approximate) so-
lution for the graph G for a given value of p. Let
e = (vi,v;) be a maximum weight edge in G and let
G’ be the graph induced by ¥\{v;,v;}. Let OPT,_,
(GR,_,) be an optimal (approximate) solution on
G’ with p — 2 vertices. We can assume that GR, =
GRIP_Z U {U,', Uj}.

We decompose the edges induced by GR,, into three
sets: {e}, {(vi, v&): vx € GRp\{vs, v, }}U{(vj, 0k): 6 €
GR,\{vi,v;}}, and {(v¢,vr): vk, v, € GR,\{0;,v;}}.

We will compare the approximation to the optimal
solution in three cases. In each case we distinguish
an edge ¢’ induced by OPT,. By definition, w(e) >
w(e’). By the triangle inequality, the 2(p — 2) edges
incident with e in GR,, contribute at least (p —2)w(e)
to W(GR,) while the 2(p — 2) edges incident with e’
in OPT, have total weight of at most 2(p — 2)w(e).
The proof will be completed by using the induc-
tion hypothesis to show that the other edges induced
by the p — 2 vertices of GR, have total weight
of at least half of the weight of the other edges
in OPT,,.

Case 1: v;,v; €OPT,. Set &' =e.

Case 2: |OPT,Ne| =1. Choose v, € OPT,\OPT/, _,
such that v, ¢ {v;,v;}. If v; € OPT), set &' = (v;,v5).

Otherwise set e’ = (vj, vy).

Case 3: OPT, N e = {). Choose €' = (v, v,) where
bz, 0y € OPT,\OPT/, _,.

In all of the three cases, the p — 2 vertices of OPT,
which are not the vertices of the chosen edge ¢’ are in
G’, so that the inductive assumption can be applied to

conclude that

W(OPT,) < w(e') + 2(p — 2)w(e) + W(OPT, _,)
< wle) +2(p — 2)w(e) + 2W(GR),_,)
< 2[w(e) + (p - 2)w(e) + W(GR,_,)]
<2W(GR,). O

Remark 3.3. The bound is asymptotically tight as
demonstrated again by the example of Remark 2.3.

Straightforward implementation of the algorithm
takes O(pn?) time. We can reduce this bound as fol-
lows: For each v € V' we define a subset 4, CE of p
highest weight edges incident with v. The above task
can be performed in O(n?) time (again, using the algo-
rithm in [2]). Then, for each vertex, using the weight
as a key, maintain the remaining O(p) edges in a
heap. It is then easy to verify that each of the | p/2]
steps of the above greedy algorithm can be executed in
O(plog p+n) time. Therefore, the complexity bound
of the algorithm is O(n? + p*log p + pn) = O(n* +
p?log p).

References

[11 Y. Asahiro, K. Iwama, H. Tamaki, T. Tokuyama,
Greedily finding 2 dense graph, in: Proc. 5th Scandinavian
Workshop on Algorithm Theory (SWAT), Lecture Notes
in Computer Science, vol. 1097, Springer, Berlin, 1996,
pp- 136-148.

[2] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, R.E. Tarjan,
Time bounds for selection, J. Comput. System Sci. 7 (1972)
448-461.

[3] B. Chandra, M. Halldorsson, Facility dispersion and
remote subgraphs, in: Proc. 5th Scandinavian Workshop on
Algorithm Theory (SWAT), Lecture Notes in Computer
Science, vol. 1097, Springer, Berlin, 1996, pp. 53-65.

[4] T.A. Feo, M. Khellaf, A class of bounded approximation
algorithms for graph partitioning, Networks 20 (1990)
181-195.

[5S] H.N. Gabow, An efficient implementation of Edmond’s algo-
rithm for maximum matchings on graphs, J. ACM 23 (1975)
221-234.

[6] H.N. Gabow, Data structures for weighted matching and
nearest common ancestors with linking, in: Proc. Ist Ann.
ACM-SIAM Symp. on Discrete Algebra 1990, pp. 434—-443.

[7] J.B. Ghosh, Computational aspects of the maximum diversity
problem, Oper. Res. Lett. 19 (1996) 175-181.

[8] B. Korte, D. Hausmann, An analysis of the greedy heuristic
for independence systems, Ann. Discrete Math. 2 (1978)
65-74.

R. Hassin et al. | Operations Research Letters 21 (1997) 133-137 137

[9] G. Kortsarz, D. Peleg, On choosing a dense subgraph, in: [11] A. Tamir, Obnoxious facility location on graphs, SIAM
Proc. 34th IEEE Ann. Symp. on Foundations of Computer J. Discrete Math. 4 (1991) 550-567.
Science, Palo Alto, CA, 1993, pp. 692-701. [12] A. Tamir, Comments on the paper: ‘Heuristic and
[10] S.S. Ravi, D.J. Rosenkrantz, G.K. Tayi, Heuristic and special special case algorithms for dispersion problems’ by S.S. Ravi,
case algorithms for dispersion problems, Oper. Res. 42 (1994) D.J. Rosenkrantz and G.K. Tayi, Oper. Res., to appear.

299-310.

