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Abstract

The input to the METRIC MAXIMUM CLUSTERING PROBLEM WITH GIVEN CLUSTER SIZES consists of a complete graph G=(V, E)
with edge weights satisfying the triangle inequality, and integers ¢ ,..., ¢, that sum to |V|. The goal is to find a partition of
V into disjoint clusters of sizes ¢i,...,cp, that maximizes the sum of weights of edges whose two ends belong to the same

cluster. We describe approximation algorithms for this problem.

(© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we approximate the METRIC MAXIMUM
CLUSTERING PROBLEM WITH GIVEN CLUSTER SIZES. The
input for the problem consists of a complete graph
G =(E, V), V ={1,...,n}, with non-negative edge
weights w(i, j), (i,j) € E, that satisfy the triangle in-
equality. In the general case of the problem, cluster
sizesc; = ¢y = --- = ¢p = lsuchthate;+- - -+c,=n
are given. In the uniform case, c; =cy=---=cp. The
problem is to partition V into sets of the given sizes,
so that the total weight of edges inside the clusters
is maximized. See [6] and its references for some
applications.

Hassin and Rubinstein [3] gave a approximation
algorithm whose error ratio is bounded by 1/2v/2 ~
0.353 for the general problem. We improve this
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result for the case in which cluster sizes are large. In
particular, when the minimum cluster size increases,
the performance guarantee of our algorithm increases
asymptotically to 0.375.

Feo and Khellaf [2] treated the uniform case and
developed a polynomial algorithm whose error ratio is
bounded by ¢/2(¢—1) or (¢ + 1)/2¢, where the cluster
size i1s ¢ =n/ p, and it is even or odd, respectively. The
bound decreases to 1/2 as ¢ approaches oc. The algo-
rithm’s time complexity is dominated by computation
of a maximum weight perfect matching. (Without the
triangle inequality assumption, the bound is 1/(¢ — 1)
or 1/c, respectively, but Feo, Goldschmidt and Khel-
laf [1] improved the bound to % in the cases of ¢ =3
and 4.) We describe an alternative algorithm for the
uniform case that achieves the ratio of 1/2 and has a
lower O(n?) complexity.

Hassin, Rubinstein and Tamir [4] generalized
the algorithm of [2] and obtained a bound of 1
for computing k clusters of size ¢ each (1 < k < n/¢)
with maximum total weight. Our discussion

0167-6377/03/$ - see front matter (© 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/50167-6377(02)00235-3



180 R Hassin, S. Rubinstein/ Operations Research Letters 31 (2003) 179-184

concerning the uniform case does not apply to this
generalization.

For E’ C E we denote by w(E’) the total weight of
edges in E’. For ¥/ C V we denote by E(V’) the edge
set of the subgraph induced by V’. To simplify the
presentation, we denote the weight w(E(V’)) of the
edges in the subgraph induced by a vertex set ¥/ by
w(V'). We denote by opt the optimal solution value,
and by apx the approximate value returned by a given
approximation algorithm. A p-matching is a set of p
vertex-disjoint edges in a graph. A p-matching with
p = |n/2] is called perfect. A greedy p-matching is
obtained by sorting the edges in non-increasing order
of their weights, and then scanning the list and se-
lecting edges as long as they are vertex-disjoint to the
previously selected edges and their number does not
exceed p. A greedy perfect matching has p = |n/2|.

2. A %-approximation algorithm

Lemma 1. Let M® be a greedy k-matching. Let M’
be an arbitrary 2k-matching. Then, for i = 1,...,k,
the weight of the ith largest edge in M® is greater
than or equal to the weight of the (2i — 1)st largest
edge in M'.

Proof. Let e,...,e; be the edges of M’ in non-
increasing order of weight. By the greedy construc-
tion, every edge of ¢’ € M’ \ M® is incident to an edge
of e € M® with w(e) = w(e’). Since every edge of
M?¥ can take the above role at most twice, it follows
that for ey,...,ey_1 we use at least i edges of M2 all
of which are at least as large as w(ey;—1). O

Lemma 2. Ifa cluster C C V of size |C|=c contains
a k-matching M of weight W, then w(C) = (¢—k)W.

Proof. Let V(M) be the set of vertices of the edges
in M. Then, |V(M)| = 2k. Consider an edge ¢ =
(u,v) € M. By the triangle inequality, for every vertex
x, w(u,x) + w(v,x) = w(u,v). Summing over x € C \
V(M), the total weight of the edges of C that con-
nect 4 and v with vertices in C \ V(M) is at least
(¢ — 2k )w(u,v). Summation over M gives a weight of
at least (¢ — 2k)W.

A similar summation over x € V(M) (including x =
u,v) gives a total weight of 2kw(u, v). However, every

edge that contributes to this sum (including (u,v)) is
counted twice. Hence, summation over M only gives
that the total weight of these edges is at least kW

Altogether, w(C) = [(¢ — 2k) + k]IW = (¢ —
nw. O

We first present our algorithm assuming that the
cluster sizes are divisible by 4. After analyzing this
case, we will show how to modify the algorithm for
the general case, and obtain the same bound asymp-
totically for big cluster sizes.

Theorem 1. Let apx be the total weight of edges in
the clusters returned by Algorithm metric (Fig. 1).
Then,

3
apx = gopt.

Proof. Consider an optimal partition Oy,...,0). Let
M; be a maximum matching in the subgraph induced
by O;,i=1,...,p.Let M =M, U---U M, (note that
|M;| = }c; and |M| = |V|). Let M{ be the match-
ing consisting of the %cl heaviest edges in M, M}
the next %cz heaviest edges, and so on up to M 1’,
which consists of the %cp lightest edges in M. From
the assumption that ¢; > --- > ¢, it follows that
> ew(M;) < 30, e;w(MY). The edge set of E(O;)
can be covered by a set of ¢; — 1 disjoint matchings.
Since M; is a maximum matching in O; it follows that
w(0;) <€ (¢; — 1 )wW(M;) and therefore

p p p
opt=")_w(0) <Y cwM) <Y cow(M)).

i=1

i=1 i=1

Let ME be the greedy matching’s edges whose end
vertices were inserted by Algorithm metric to S;. Note
that |[ME| = ¢;/4.

By Lemma 1, w(M]) < 2w(M}). Therefore, by
Lemma 2,

p
apx =Y (¢i — [ME))w(ME)
i=1
3 14
= ZZ cw(MP)

i=1

3 3
,, , —
= 3 ,-E_l ecw(M]) = 80pt. O
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Metric

input
satisfying the triangle inequality.
returns

begin
m =Y

forevery it =1,...,p

1. A complete undirected graph G = (V, E) with weights w(e), e € E
2. Constants ¢1 > -+ > ¢p > 4 such that ¢, =0 mod 4, and 3_;¢; < |V].

Clusters S1,...,Sp such that |S;| = ¢;.

q
M9 = (eq,...,en) = a greedy m-matching.

S; := the end vertices of the § heaviest edges in MY.

M9 = MI\ S;.
Complete every S;, i = 1,...,p, to size ¢; by adding arbitrary, yet unassigned vertices.
return Si,...,Sp.
end Metric

Fig. 1. Algorithm metric.

The situation is more complex when the restriction
that the cluster sizes are divisible by 4 is removed.
We propose to apply Algorithm Metric with sizes
Cloeens c;,, where ¢] = 4|c¢;/4], and complete the clus-
ters arbitrarily to sizes cy,...,c,. If the cluster sizes
are large enough, the bound is not greatly affected by
this change and will be asymptotically % We now
describe the changes in the algorithm and analysis
that are necessary to account for any cluster sizes at
least 4.

Suppose that for i = 1,..., p, ¢; = 4k; + J;, where
k; = 1 is an integer and &; € {0,1,2,3}. Let O; be the
ith cluster in an optimal solution and let O/ be a max-
imum weight subset of O; resulting from the deletion
of o; vertices. Then

(4ki)

w(o) _ |E(Opl _ \ 2

w(0;)) ~ |E(O) (q)
2

and therefore

P

P
i—1 i

w(O;). (1)

i=1 i

Since |O]| = 4k;, E(O}) can be covered by 4k;—1
disjoint matchings. Hence, a maximum matching,
M;, in the subgraph induced by O] satisfies w(O}) <
(4k; — 1)w(M;) and with (1)

4
opt <Y fiw(M;), ()
i=1

(2)/ (%)
where f; = f(¢;) =4k — 1) =
2 2

¢i(c;—1)/4k;. Note that f is not necessarily monotone
increasing. Let ji,...,j, be a permutation of 1,..., p
such that f;, > --- = f; .

Let M =M; U- - -UM,. Note that |M;| =2k;. Let M|
be the matching consisting of the 2k; heaviest edges
in M, M, the next 2k;, heaviest edges, and so on up
to M ;, which consists of the 2k;, lightest edges in M.
Clearly,

14 14
SO rwM) < fiwM)). (3)
i=1 i=1 :

Consider a greedy matching M® of size J|M|. Let
M} be the matching consisting of the k; heaviest
edges in Mé, Mi the next k;, heaviest edges, and so
on. Let S? be the set of end vertices of the edges in
ME, and let {S),...,S,} be an arbitrary completion of
(S%,...,8%) to disjoint clusters of sizes (c1,...,¢p).
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By Lemma 1
w(M;) < 2w(M}), (4)
and by Lemma 2
w(S;) = (¢; — ki)w(ME). (%)
Combining (2)}+5) we obtain

p
opt <> giw(Si),
i=1

where g; = g(c) = 2fi/(¢i — ki) = cie;i — 1)/
2k,'((,',' - k,)
Let f = [max{g(c;)|i=1,..., p}]”", then
P
apx = Z w(S;) = Bopt.

i=1

For example, for ¢; = 4,...,12 1/g; is 0.5, 0.4,
0.333, 0.286, 0.428, 0.389, 0.356, 0.327, and 0.409.
The bound improves over the previously known bound
of 1= = 0353 if ¢; ¢ {2,3,6,7,11,15,19}, and in
particular if all cluster sizes are at least 20. When

min{c;:i=1,..., p} = o0, B — 2.

3. The uniform case

We now consider the uniform case, that is ¢; =c¢ for
i=1,..., p. Consider the set of partitions of V into
clusters of size ¢ each. A random solution is obtained
by randomly (uniformly) selecting such a partition.
The following theorem states a bound on the expected
value of a random solution. When the cluster sizes are
not identical, Example 1 in Section 4 shows that the
expected weight of a random solution is not a good
approximation. Also note that in contrast to a similar
bound for the related MAXIMUM CUT PROBLEM, our result
requires that the edge weights satisfies the triangle
inequality.

Theorem 2. The expected weight of a random solu-
tion is at least %opt.

Proof. Consider an optimal partition OPT =
(O1,...,0p). Let M be a matching consisting of the
union of maximum perfect matchings in the subgraphs
induced by O;,...,0,.

Suppose first that ¢ is even. Then M is a perfect
matching in G. Let S, be the (random) set of edges
that are incident to v in the cluster that contains
v in a random solution. The weight of a random
solution is

1

1
veV (uv)eM

Consider an edge (u,v) € M. A solution in which u
and v are contained in the same cluster satisfies, by
the triangle inequality, that the average weight of an
edge in S, US, is at least %w(u, v). As for the solutions
in which u and v belong to distinct clusters, we pair
these solutions so that each pair consists of a solution
and another one obtained by swapping v and v. Again
it follows from the triangle inequality that the average
weight of an edge in S, U S, in such a pair of solu-
tions is at least %w(u, v). Hence the expected average
weight of an edge in a random solution is at least 1/2
the average edge weight in M. The claim follows by
observing that the average edge weight in M is at least
as large as the average edge weight in OPT (see for
example [4]).

Suppose now that ¢ is odd. Then, M leaves out one
vertex from each subset. We consider the stars incident
to these vertices in the optimal and random solutions.
Since M is the union of maximum matchings, the sum
of these stars in OPT is at most 2w(M ). On the other
hand, from the same pairing argument and the triangle
inequality, the expected total weight of these stars in
a random solution is at least w(M). The rest of the
proof of this case follows the same arguments as when
¢ was assumed to be even. O

We use the method of conditional probabilities [5]
to de-randomize the algorithm while preserving its
performance guarantee. At a given stage we have
already determined the contents of several clusters
and we deal with one active cluster that may now be
partially filled. Let  be the number of clusters yet to
be constructed excluding the active one. Let 4 be the
vertices already assigned to the active cluster, a = |4],
and let B be the yet undecided vertices, b = |B|. We
maintain and update foreachu € Bo,= 3 ., w(u,v),
€= > cp % and =3 pw(uv). Altogether,
these updates take O(n?) time.
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The expected weight of a random completion of the
assignment of vertices to clusters is

_ ()6

p *F b

(2
The first term is the expected weight of edges between
vertices that will be added to the active cluster and the
vertices already in it, the second is the expected weight
of edges between vertices in B that will be placed in
the same cluster.

At each step we examine the insertion of each u € B
to the active cluster (contributing x,) followed by a
random completion, and select the one that gives max-
imum expected weight. There are » insertions and each

requires O(n) examinations. Thus, altogether the com-
plexity is O(n?).

B.

4. Some bad examples

In this section, we propose some natural algorithms
and provide for each of them an instance for which
the algorithm performs badly.

In Section 3 we have shown that the expected
weight of a random solution is at least %opt when the
clusters have a common size. The following example
shows that when the cluster sizes are not identical the
expected weight of a random solution may be very
small relative to opt.

Example 1. Consider an instance with weights
w(l,j)=1, j=2,...,n, and w(i,j) = 0 otherwise.
Letcy=2andc¢;=1,i=2,...,n— 1. Then, only so-
lutions in which vertex 1 is placed in the large cluster
have a positive weight. This happens with probability
2 Thus, opt = 1 whereas the expected weight of a
random solution is less than 2/n, and the ratio can be
made arbitrarily small.

Next, we show that a natural local search approach
does not guarantee a constant bound, even in the uni-
form case.

Example 2. We construct an instance with 0/1
weights. The vertex set J' is composed of disjoint sub-

sets Vo, Vi,..., Ve |Vo|=(£ —k),and fori=1,...,7,
V: has a distinguished vertex v; € V;, and |V;| = k.
Thus, |V| = #%. The subgraph induced by the unit
weight edges consists of the cliques induced by V;,
i=1,...,7, and the clique induced by the distin-
guished vertices vy,...,v,. (Vertices in Vy are not
adjacent to any edge with unit weight.) Suppose that
V' must be partitioned into ¢ clusters of size / each,
and that 1 <k? </ <|V|. The optimal solution con-
tains a cluster with the distinguished vertices and its
weight is of order £2. A solution in which each V;,
i=1,...,¢ is contained in a different cluster cannot
be improved by relocating less than k vertices, and
its weight is O(Zk?).

A perfect matching M that, for each p=1,...,|M]|,
contains p edges whose total weight is at least «
times the maximum weight of a p-matching is said
to be a-robust. Hassin and Rubinstein [3] proved that
there always exists a 1/v/2-robust matching, and that
there are instances where a higher robustness is not
possible.

Consider the following extension of the algorithm
of Feo and Khellaf [2] and Hassin et al. [4]:

1. Compute an a-robust matching S.

Let S = {(u;,v;) j = 1,...,m}, where
w(u), ) 2wk, 00) j=1,....m— 1.

2. For j = 1,...,p, let d; = |¢;/2] and D; = d,
+--+djj=1,...,p. Let Dy = 0. Set V; =
{uj,vj |j=Di—1 + 1,...,Di} 1= 1,...,p.

3. For each i such that ¢; is odd, add to V; an arbi-
trary yet unassigned vertex.

Hassin and Rubinstein [3] proved that the algo-
rithm returns an x/2-approximation for the maximum
clustering problem with cluster sizes ¢, ...,c,. Thus,
the best bound derived this way is 1/2+/2. Moreover,
since both a maximum matching and a greedy perfect
matching are %-robust, using such matchings in the
algorithm guarantees at least a %-approximation.

The following example demonstrates that the %
bound is the best possible when using a maximum
matching:

Example 3. Let ¥ =4UBUCUDUF where [4|=M,
|B|=|C|=|D|=|F|=M/2, D={d,...,dy;}, and
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F ={e,...,emp}. Let

(2, i€BjeC,

1, i€BjgCoricCj¢Bh,
wi,j)=¢ 1, G)=0re)l=1,....emp,

0, ije4,

L % otherwise.

Let ¢ = (M, 1,...,1) where the number of clusters of
size 1 is 2M, so that »_.¢; = 3M = |V|. An optimal
solution will choose for the big cluster the set BU C
and thus

opt =2(M)?.

The edges {(d1,€1),...,(dum)2, em2)} completed by ar-
bitrary disjoint edges between 4 and BUC constitute a
maximum matching. The algorithm may choose such
a matching and then have D U F as the large cluster,
and then

1 M2+M
apx == | — —.
PX=35\72 2

This gives asymptotically a bound of :T'

We observe that a greedy matching may have
an advantage over a maximum matching since it
chooses larger edges for the large clusters. The fol-
lowing example shows however that the choice of
a greedy matching does not guarantee more than a
%-approximation, even for the case of two uniform
clusters.

Example 4. Let V =4 UBU C with |4| = |B| = M/2,
|C| =M, A= {al,...,aM/z}, and B = {bl,...,bM/z}.

Let ¢ = (M, M), and

¢

2, i€Cj€AUB,

2, (,)=(anb)I=1,...,M/2,
w(i,j):J i, ij€dorijeB,

i i€djeBoricBjeA4,

L0, i,jeC.

The algorithm may choose the edges (a;,b;) for the
greedy matching, resulting in clusters 4 U B and C.
The weight of this solution is

2M2+2X4 M M, M?
apx = - — = — R —.
PX=37 3\ 5 2

Consider a solution with sets 4 U C; and B U C;,
where C1,C; C C are disjoint and of cardi-
nality M/2 each. The value of this solution is

M\ 4 M
2 l:Z (——) + = ( 2 )] ~ $M?. Therefore the al-
2 3\ 2

gorithm achieves in this case asymptotically no more
than %opt.
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