Information Processing Letters 51 (1994) 133-140

Informqtion
Processing
Letters

Approximations for the maximum acyclic subgraph
problem

Refael Hassin *, Shlomi Rubinstein

Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Communicated by S. Zaks; received 9 May 1993; revised 9 February 1994

Abstract

Given a directed graph G = (¥, 4), the maximum acyclic subgraph problem is to compute a subset, .4’, of arcs
of maximum size or total weight so that G’ = (V, 4’) is acyclic. We discuss several approximation algorithms
for this problem. Our main result is an O(]4| + d3.,) algorithm that'produces a solution with at least a fraction
1/2 4+ Q(1/V/dmax) of the number of arcs in an optimal solution. Here, dmax is the maximum vertex degree in G.

Keywords: Analysis of algorithms; Combinatorial problems

1. Introduction

Given a directed graph G = (V,A4), V =
{1,...,n}, with arc weights w;; > 0, (i, j) € 4,
the maximum acyclic subgraph problem isto find
a subset 4’ C A such that G’ = (V, A’) is acyclic
andw(A4') = Z(i,j)EA’ w;;j is maximized. An al-
ternative statement of this problem (the mini-
mum feedback arc set problem) requires to find
a minimum weight subset A” C A such that ev-
ery (directed) cycle of G contains at least one
arc in A”. The problem is NP hard [11]. It be-
longs 1o the class of “edge deletion problems”
[17,21]. It has been shown to be complete for
the class of permutation optimization problems,
MAX SNP([r], defined in {19], that can be ap-
proximated within a fixed error ratio.

* Corresponding author. Email: hassin@math.tau.ac.il.

The problem is polynomially solvable when G
is planar ([4,12,15] and Chapter 8.4 in [8]).
The best complexity of these algorithms is O (n3)
[51and O(n3/%log(nW)) where W is the largest
magnitude of an arc weight (and the weights
are assumed to be integral) [6]. The problem is
also polynomially solvable for the more general
class of K3 3-free graphs [18] and the classes of
reducible flow graphs [20] and weakly acyclic
graphs [7]. A variation of the problem in which
the objective is to minimize the greatest outde-
gree of a vertex in the subgraph (V, 4”) can be
solved in linear time [16].

The problem has a variety of applications
such as ordering alternatives by group voting,
determining of a hierarchy of the sectors of an
economy, determining ancestry relationships,
analysis of systems with feedback, and cer-
tain scheduling problems [3,14,20]. Flood [3]

0020-0190/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved

SSDI0020-0190(94)00086-E

134 R. Hassin, S. Rubinstein /Information Processing Lelters 51 (1994) 133-140

used the relation of the problem to quadratic
assignment for developing an efficient branch-
and-bound algorithm, Jinger [14] studied the
acyclic subgraph polytope.

The maximum acyclic subgraph and mini-
mum feedback arc set problems are equivalent
with respect to their optimal solution. How-
ever, bounded error polynomial approximations
are known only for the maximum acyclic sub-
graph version. The simplest algorithm is the
following [9]: Let 4; = {(i,j).€ A]i < j},
A; = {(i,j) € A]i> j}. Clearly, both (V, 4;)
and (V, 4A;) are acyclic and, since 4, U 4A; = 4,
max{w(A4;),w(A4;)} = 0.5w(4). Therefore, it
is a 0.5 approximation for the problem. Note
that the algorithm has linear complexity.

Korte and Hausmann [13] proved that the
greedy algorithm (i.e., construct a solution by
repeatedly selecting the arc of maximum weight
that does not form a directed cycle with the al-
ready chosen arcs) does not guarantee any fixed
error ratio.

A more sophisticated algorithm for the un-
weighted problem was proposed by Berger and
Shor [2]. They note that without loss of general-
ity we can assume that G has no cycles of length
2, since any bound that can be achieved under
this assumption can also be achieved without it
by a simple modification of the algorithm. They
then develop an algorithm producing an acyclic
subgraph of at least (1/2 + Q(1/y/dmax))\4]
arcs, where dmax is the maximum vertex de-
gree of G. Even when cycles of length two
exist, the solution contains at least a fraction
(1/2 + Q(1/+/dmax)) of the number of arcs in
an optimal solution. The running time of the
algorithm is O (JA4]- [V]).

In this paper we examine a variety of algo-
rithms for the problem. Our main contribution
is an algorithm for the unweighted problem that
guarantees a bound similar to that achieved by
Berger and Shore, but with time complexity
O(|A] + d3,x) which is better than O(J4| - [V])
in certain cases.

2. Inducing a solution from a permutation

Call an acyclic subgraph of G maximal if it
is not strictly contained in another acyclic sub- -
graph of G. Since we assume that the arc weights
are positive, the maximum acyclic subgraph is
also maximal.

A permutation n of {l,...,n} induces an
acyclic subgraph G, = (V,A4;), where 4, =
{(i,j) € A| n(i) < n(j)}. Note that G, may
not be maximal if it is not connected. How-
ever every maximal acyclic subgraph of G is
induced by some permutation. (One can always
renumber the vertices of an acyclic graph so
that each arc (i,/) in it satisfies i < j, and if
the graph is maximal then it is the one induced
by this permutation.) Therefore, the maximum
acyclic subgraph problem is exactly the prob-
lem of computing a permutation whose induced
subgraph is of maximum weight.

We first describe a prototype algorithm that
generates a permutation, 7, such that w(A4;) >
0.5w(A4). Fori € V and S C V, let wi"(S) =

Ljes Wii» WPH(S) = Tjes Wij-
Algorithm 1. ‘

1. SetS =V, =1,u=n.

2. Choose i € S. Set S «— S\ {i}. f wi"(S) <
w(S), setw(i) = 1,1 — I+ 1. Ifwi(S) >
w(S), set n(i) = u, u —u—1.

3. Ifu > [go to Step 2. Else, stop and output 7.

The weight of the arcs preserved by the algo-
rithm is at least one half of the total weight of 4
since this property holds in every iteration with
respect to the arcs incident with vertex i in the
subgraph induced by S.

3. Randomization

The difficulty in obtaining a bound of more
than 0.5 on the error while applying simple
constructive algorithms arises when wi®(S) =~
wf(S) for many vertices. We will try to over-
come the difficulties associated with such a situ-
ation and improve the bound for the unweighted

R. Hassin, S. Rubinstein/Information Processing Letters 51 (1994) 133-140 135

problem by treating the maximum vertex degree
in the graph as a parameter.

We start by presenting a randomized algo-
rithm. It is different from the one suggested by
[2] but achieves a similar bound. We assume,
without loss of generality, that G contains no
cycles of length 2. If it contains cycles of length
2 then, as done in [2], they can be temporarily
removed before the algorithm is executed. Any
permutation will induce a graph with exactly
one arc from each such cycle.

Algorithm 2.

1. Partition V into two subsets V;, V; by assign-
ing each vertex to each subset with probabil-
ity 0.5. Let A4, = {(i,/) | i,j € V,. Execute
Step2forr=1,2.

2. Form a permutation #, of the vertices in V,
by applying Algorithm 1 to (V, 4,). The ver-
tices are selected in increasing order of their
indices.

3. Define the final permutation by choosing be-
tween (7, 7m;) and (73, ;) the permutation
inducing a subgraph with the larger number
of arcs.

Theorem 3. Let APX be the expected number of
arcs in the solution computed by Algorithm 2.
Then

APX = (0.5 + Q(

1
—~ | }|4|.
dmax))
Proof. Consider a veriex i € V. Let

Di* = |(j,i) € 4: j > i,
Dy = |(i,j) € A: j > i,
d = |, i) jeV, j>il,
a* =, j)jeW, j>Ii.

The random variable d"‘ is bmomlally dis-
tributed with parameters (0 S, Din). The reason
is that for each arc incident wnh i there is a
probability of 0.5 that its other end is also in
¥,. Similarly, d?"* is binomial with parameters
(0.5, D94).

Without loss of generality assume that Di* >
D¢“'. Fora > 0,

P=Pr(|d" - d| > a) > Pr(d" - d? > a).

Since, by our assumption, G contains no cycles
of length 2, d!® and 4™ are independent random
variables. Consider two independent binomial
random variables, X, X; each with parameters
(0.5, D). Then,

P> Pr(X;-X; 2 a)
2> Pr(X, = 05D"‘+a X € 05D“‘)
= 0.5Pr(X; > 0.5D" + a),

where the first inequality follows from our as-
sumption that Di® > D, Setting a to the stan-
dard deviation of X, @ = 3(Di*)!/2, we obtain
that for some constant !, 8 > 0,

Pr(|d]" —dM™| > a) > B.

Let D; = D 4 D, then, DI* > D;/2 and a =
Q(Di) = QDi/VD;) = Q(Di//drmax)-

Step 2 assigns vertex [to the next lower or
higher position in the permutation according to
the sign of the difference di" — d?*'. The total
number of arcs induced by =, is

3 max(df, d*)

ieV; i ou
= Y (A | Ly - dp)
i€y,

= 0.5[4,[+ 0.5 [di* — df™|.

i€V,

We conclude that the expected number of arcs
induced by =, satisfies

APX, = 0.5|4,] + Q(}: \/T)

Since, }; Di = |A|, it follows that

! For a binomial variable X with parameters (p,n) such
that p < 0.5, the probability pn = Pr(X —np 2 (np(l -
2))112) is positive for all values n. It converges 10 a positive
limit, by the central limit theorem, and hence the infimum
of pn over n = 1,2,... is positive.

136 R. Hassin, S. Rubinstein/Information Processing Letters 51 (1994) 133-140

APX\ + APX,
A
=aﬂmq+mm+n(b‘)

max

Step 3 of the algorithm orders the two partial
permutations so that the resulting induced sub-
graph contains at least half of the arcs connecting

vertices in ¥ with vertices in V3. The theorem

now follows. [J

Remark 4. The expected number of arcs in-
duced by the algorithm is also (0.5 +Q(1/d))|A|
where d = 2|A4|/n is the average degree in G.
This bound results since the expected number
of arcs, in addition to 0.5]4] gained in Step 3 is
at least one per vertex. This bound can be bet-
ter than the one stated in the theorem when the
average degree is bounded while the maximum
degree is not.

4. Derandomization

We now describe the details necessary for an

efficient execution of derandomization through* *

the method of conditional probabilities (see, for
example, [1]). Using this method we turn our
randomized algorithm into a deterministic one
with the same performance guarantee.

Instead of randomly generating ¥}, V; in Algo-
rithm 2, the method assigns successively a ver-
tex at a time to one of the subsets so that the
expected size of the solution obtained by contin-
uing randomly from this point on is maximized.
The reason is that the expected size of the ran-
dom solution is the average of the two expec-
tations obtained conditioned on the assignment
of the current vertex. Assigning to the set giving
the larger value guarantees at least the uncondi-
tional expected value.

Note, from the proof of Theorem 3, that the
term Q(1/+/dmax))|A| comes from the anal-
ysis of the expected number of arcs obtained
within the sets /| and V,. Step 3 of Algorithm
2 guarantees half of the arcs between the sets
(and if we just consider expectations then both
(my,m3) and (@, m;) are suitable for satisfy-
ing the theorem). We will now show how the

above term can be guaranteed deterministically.
With Step 3, the complete solution will have
(0.5 4+ Q(1/+/dmax))] 4| arcs.

Suppose that each of the vertices 1,...,k —
1 has already been assigned to V] or V5. We
will now show how to compute efficiently the
expected number of arcs within these sets ob-
tained by Step 2 of Algorithm 2, when WV, V5 are
completed by randomly assigning .the vertices
k,...,n. Asin the proof of Theorem 3, we asso-
ciate each arc with its lower index vertex.

Consider a given vertex i € {l,...,k — 1}.
Suppose that it has been assigned to ¥;. Clearly,
Algorithm 2 guarantees that the approximate so-
lution will contain at least one half of the arcs
within ¥, which are associated with i. We are in-
terested now in computing the expected number
of additional such arcs that will be contained in
our solution, given the initial assignment of the
first k — 1 vertices. Let E(x;,y;, z;) denote the
expected number of such additional arcs, where

xi= (i) jeV,i<j<k|

~(,)):J eV, i<j<k|
yi =10, = k|, -
zj = |(i,j):] = k.

Then,
E(x,0,0) = 0.5|x]|,
X=...,-2,—-1,0,1,2,...,

and the other values can be computed recur-

sively by

E(x,y,0) = 0.5E(x + 1,y ~ 1,0)
+ 0.5E(x,y —1,0),
E(x,y,z) =0.5E(x,y,z—1)

+05E(x—-1l,y,z-1), z=1.

The recursion can be applied by computing
E(x,y,0) for y fixed and all values of x, starting
with y = 0 and then y = | and so on. Then
E(x,y, z) is computed for z fixed and all values
of x,y, starting with z = 1 and then z = 2
and so on. The overall effort in computing these
values for X = —dmax,---,dmax, ¥ = 0,...,dmax,

R. Hassin, S. Rubinstein /Information Processing Letters 51 (1994) 133~140 137

z = 0,...,dmax is O(d3,,), where dpnax is the
maximum vertex degree in G.

The expected gain at the arcs associated with
a vertex [2 k is simply E (0, y;, z;).

Note that the above expectations are valid in-
dependently of the order by which vertices are
considered for joining the two sets.

The expected solution size, conditioned on
a given partial assignment of vertices into the
two subsets is 0.5]4] + Z’,-‘;,l E(xi,yi,zi) +
Z:':kE(O’yls Zi)-

Whenever an unassigned vertex is considered,
the two alternatives for assigning it are com-
pared. Each alternative affects the (x,y, z) val-
ues of its neighbors, and then the preferred as-
signment is made and the revised values of the
neighbors are determined. The total effort for
making these revisions and comparing the ex-
pected solution values associated with the two
alternatives of each vertex at its turn are alto-
gether O(|4)).

Thus altogether, computing the £ values, de-
termining the assignment to the two sets, and the
execution of Steps 2 and 3 of Algorithm 2 take
O(d3ax + 14D

5. Constructive algorithms

We mentioned that a 0.5 approximation can
be obtained by comparing the graphs defined by
any permutation and its reverse. We can further
show that a better bound cannot be guaranteed
by selecting any polynomial set of permutations
(independent of the particular instance of the
problem) and then comparing the solutions they
. induce. Therefore, we now turn to investigate
procedures that construct a permutation while
taking into account the data of the given instance
of the problem.

Our basic tool is Algorithm 1. Note that it does
not specify the order by which vertices are ex-
amined in Step 2. We will consider some “at-
tractive” rules for examining the vertices, and
describe a “bad example” for each. All the bad
examples describe unweighted instances.

Recall that win(S) = Yjes Wi wPH(S) =

EJES Wij. Let W;(S) = max{w,i" (S), 'w;"" (S)).
Our first rule gains at each iteration the maxi-
mum possible weight:

Algorithm 5. In Step 2 of Algorithm 1, choose
the vertex i € S with the largest W;(S).

Example 6. Let n = 2k + 1 and 4 = {{j,k +
DjJj=L. ku{lk+1L))]|Jj=k+
2,...,2k + 1}. The graph is acyclic and the opti-
mal solution contains A. However, Algorithm §
will start by choosing k + 1 and assign n(k + 1)
to either 1 or n, thus losing half of the arcs.

Let w;(S) = min{w™(S), wP (S). Our sec-
ond rule is similar to that used by Lin and Sahni
[16] to solves their bottleneck problem. It min-
imizes at each iteration the weight of lost arcs:

Algorithm 7. In Step 2 of Algorithm 1, choose
the vertex / € .S with the smallest w;(S).

Example 8. Letn = k2, V = VU WKU---UV,,
where V; = {(i— 1)k + 1,...,ik},i=1,... k.
let A = {(p,q) | p eV, g € Viyy, i =
L...,k-1}Yu{(p,9) | p € %, ¢ € V}. Note
that A\ {(p,q) | p € Vi, g € V1} is acyclic and
the optimal solution contains k2(k — 1) arcs.
However, the following sequence of selections
by Algorithm 7 is possible. Initially, S = ¥ and
w;(S) = kforall/ € V. Set n(1) = 1. Now,
S = V\ {1}, wi(S) = k — 1 for the vertices
iin V3 and V;, while w;(S) = k for all of the
other vertices of S. Vertex k + | € ¥, may be
the next to be selected and n(k + 1) be set to
2. The candidates for selection are now the ver-
tices in ¥}, V5, V3 and V. The algorithm may set
now n(2k + 1) = 3, then n(3k + 1) = 4 and
soontill m((k — 1)k + 1) is set to k. There are
k — 1 vertices left now in .S from each set. The
algorithm may proceed selecting the vertices in
the following order: (2,k + 2,2k + 2,..., (k -
1)k + 2,3,k + 3,...). This way the solution ob-
tained contains the k2 (k + 1)/2 arcs of the form
(ik + j,(i+ 1)k + 1) for! > j. Asymptotically
this is just half the optimal number.

Let @;(S) = {win(S) — w?™(S)]. Our third

138 R. Hassin, S. Rubinstein /information Processing Letters 51 (1994) 133-140

rule maximizes at each iteration thc excess of
gained weight over the lost weight:

Algorithm 9. In Step 2 of Algorithm 1, choose
the vertex i € S with the largest w;(S).

Example 10. Letn = 2k + 3,4 = {(j,k + 1) |
J=1 o L kJu{tk+ 1,]| i=k+2,...,2k+
3}. Then vertex k + 1 initially has wy (V) =
2 while all the other vertices have 0, (S) = 1.
Hence, k 4 1 will be the first 1o be chosen by

. Algorithm 9 and the number of lost arcs in the
solution is asymptotically [4]|/2.

Let

wUS) win(S) }

ri(S) = max{ W(S) WS

QOur fourth rule maximizes at each iteration the
ratio of gained weight to the lost weight:

Algorithm 11, In Step 2 of Algorithm 1, choose
the vertex i € S with the largest r;(S).

Example 12. Consider again the graph of Exam-
ple 8. An optimal solution consists of k2(k — 1)
arcs, for example {({,j) |i€ V), j€ Vi1, [=
1,...,k—1}. Algorithm 11 may choose a vertex
from I, then from V3, Vi,..., Vi_,, and then in
a cyclic order of the sets, starting from Vj,_; two
vertices from each subset. The chosen permuta-
tion is described for k = 6 in the following table:

W h Vs Vg Vs Ve
1 2 3 4 5 7
9 11 13 15 6 8
10 12 14 16 17 19
21 23 25 27 18 20
22 24 26 28 29 31
33 34 35 36 30 32

This permutation induces a solution with k (k +
1)/2 arcs going from a vertex in ¥ to a vertex in
Vi1 forl = 1,...,k. The total number of arcs
chosen by Algorithm 11 is k2(k + 1)/2, and the
ratio of the optimal to the approxxmate solutions
is asymptotically 0.5. '

We now describe a different approach to con-
structing a pcrmutation. Instead of determining
the exact value of (i) in Step 2, we only de-
termine the relative location of i with respect to
the vertices that were already examined. Thus, at
each stage we are given a (total) order on the set
Q@ = V\S. Wechoose i € §, and select for it the
best location with respect to that order. At any
given point of the execution of the algorithm, let
~ denote the order defined on the subset of V'
scanned so far. In particular k < j means that k
is either j or a vertex assigned to precede j.

Algorithm 13.

1. Choose (i,j) € A.Set Q@ = {i,j},i<j, S =
V\ Q.

2. Suppose that this step is reached with an order
< of Q. Choose i € S and set S «— S\ i.
Compute for each j € Q

D_, = Z Wki + Z Wik-

klk=j kli~<k

Set Dy =) ;e Wij- Let Dy = max{D; | j €
Q}.1f D; > Dg extend < by adding i so that
it is the immediate successor of [. If D; < Dy,
extend < by adding i as the first element.

3. If S = @, stop. Else, set Q@ « QU {i} and go
to Step 2.

Example 14, Let 4 = {(I,m)}u{(n,j) | j =
2,...,n=-13u{y) | Jj=1..,n=1}LIf
Algorithm 13 starts with (1, n) then at least half
of the other arcs must be lost. Thus the outcome
is n— 1 arcs while the optimum solution contains
the 2(n - 2) arcs in A\ (1, n).

6. Local search

The general idea of a local search involves a
definition of a neighborhood for each feasible so-
lution of the problem. Then, the current solution
is replaced by a better solution from its neigh--
borhood if such a solution exists. Else, the algo-
rithm stops with the current (“locally optlmal”)
solution.

R. Hassin, S. Rubinstein /Information Processing Letters 51 (1994) 133140 139

We find it natural to define neighborhoods
with respect permutations. Let }; denote the
neighborhood of =.

Algorithm 15. Apply local search with ¥V de-
fined as follows: n’ € V; if for some j # k,

o= (e T T gty oo, T 1, Mgy e - 2)

or

o= (T, e, Mgty ey T Ty Mg,)

In other words, n} is obtained from m by
changing the position of one vertex. For exam-
ple, (1,2,3,6,4,5,7) and (1,3,4,5,2,6,7) are
in the neighborhood of (1,2,3,4,5,6,7).

Algorithm 15 is a 0.5 approximation. We
prove this claim by showing that any solution
that contains less then half of the total arc
weights cannot be induced by a locally opti-
mal permutation. Such a solution must have at
least one vertex such that the total weight of the
arcs incident with it in the induced subgraph is
strictly less then one half of the total weight of
the arcs incident with it in G. But in this case a
better permutation can be obtained by moving
this vertex to either the first or the last position
(one of these options will add more weight then
what is lost by the change). Thus, the proposed
solution cannot be locally optimal.

Example 16. Let A = {(i,i+1)]|i=1,...,n—
1}. The graph is acyclic and the optimal solution
contains all the n — 1 arcs. However, the permu-
tation (n - l,n,n—-3,n-2,...,5,6,3,4,1,2)
is locally optimal, and induces the subgraph
with the n/2 arcs (n — l,n),(n - 3,n —
2),...,(5,6),(3,4), (1,2). Any local change in
the permutation may add at most one arc but
will surely loose one arc as well.

Algorithm 17. Apply local search with F; de-
fined as follows: n’ € V; if for some j < k,
nl = (nl:-'-’nj—-l)nk:nj-{-l:

e Ty Ty Thg 15 - -2)-

In other words, ' is obtained from = by swap-
ping two vertices. For example, the permuta-

tion (1,6,3,4,5,2,7) is in the neighborhood of
(1,2,3,4,5,6,7).

Algorithm 17 is a 0.5 approximation. We
prove this claim by showing that any solution
that contains less then one half of the total arc
weight cannot be induced by a locally optimal
permutation. It is sufficient to show that the
weight of the subgraph induced by a locally op-
timal permutation, x, is at least as good as the
subgraph induced by the reverse permutation,
7 (since the sum of the two is equal to the total
arc weight in G). The reverse permutation, 7
can be obtained from n by a sequence of n/2
swaps: First swap n(l) and n(n), then n(2)
with m(n — 1), and so on. The effect of the sec-
ond swap on the weight of the induced subgraph
is independent of the first swap because it only

.affects arcs whose two ends are different from

both n(1) and n(n). Similarly, each successive
swap affects the solution in the same way as it
will affect it if we do it directly on the original
permutation z. Since n is a local maximum,
none of these swaps increases the induced sub-
graph’s weight. This proves our claim. - '

Example 18. Consider again Example 16. The
permutation described there is also locally opti-
mal with respect 1o Algorithm 17.

Even if we allow a larger neighborhood in
which up to k swaps are allowed for some fixed
k, an extension of Example 16 still applies: Let
V=NNuhhu.---uly, where Vif = m > k
for i = 1,...,2/. From each vertex in V;, for
i even, there are arcs going to all of the m
vertices in F;,,. From each vertex in ¥V}, for
i odd, there are m — k arcs going to vertices
in V;,,. These arcs are selected so that for a
vertex in V;, i even, there are exactly m — k
arcs entering from V;_,. The graph is acyclic
and has /m? + I/m(m - k) arcs. Consider a
permutation such that the vertices from each
Vi are consecutive, and the order of the sets is
V’.’/—l: V2/: VZ/—L ;,21—2’ tees V3: V4: Vl: VZ- From
each vertex in Vj, i even, the solution induced
by the permutation contains all of the m arcs
leaving it. The solution contains none of the arcs
going from V; to V;,, for i odd. Thus it contains
{m arcs, which is about one half of the optimal

140 R. Hassin, S. Rubinstein /Informatian Processing Letters 51 (1994) 133-140

value. Any change of location of any single in-
dex entails a loss of at least k arcs. Hence, by
relocating no more than k vertices no gain is
possible. , '

Acknowledgement

The proof that Algorithm 17 is a 0.5 approxi-
mation is due to Nili Gutman.

References

{1] N. Alon and J.H. Spencer, The Probabilistic Method
(John Wiley and Sons, New York, 1992).

[2] B. Berger and P.W. Shor, Approximation algorithms
for the maximum acyclic subgraph problem, in: Proc.
Ist Ann. ACM-SIAM Symp. on Discrete Algorithms
(1990) 236-243.

{3] M.M. Flood, Exact and heuristic algorithms for the
weighted feedback arc set problem: A special case
of the skew-symmetric quadratic assignment problem,
Networks 20 (1990) 1-23.

[4] A. Frank, How 10 make a digraph strongly connected,
Combinatorica 1 (1981) 145-153.

{5] H.N. Gabow, A representation for crossing set families
with applications to submodular flow problems, Proc.
4th Ann. ACM-SIAM Symp. on Discrete Algorithms
(1993) 202-211.

{6] H.N. Gabow, A framework for cost-scaling algorithms
for submodular flow problems, 1993.

[7] M. Grotschel, M. Jinger and G. Reinhelt,
On the acyclic subgraph polytope, Mathematical
Programming 33 (1985) 28-42.

[8] M. Grbtchel, L. Lovdsz and A. Schrijver, Geometric
Algorithms and Combinatorial ~ Optimization
(Springer, Berlin, 1988).

[9] B. Korte, Approximation algorithms for discrete
optimization problcms, Ann. Discrete Math. 4 (1979)
85-120.

[10] R. Kaas, A branch and bound algorithm for the acyclic
subgraph problem, European J. Oper. Res. 8 {1981)
335-362.

{11] RM. Karp, Reducibility among combinatorial
problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum, New
York, 1972) 85-103.

[12] A. Karazanov, On the minimal number of arcs of
a digraph meeting all its directed cutsets, abstract,
Graph Theory Newsletters 8 (1979).

.[13] B. Korte and D. Hausmann, An analysis of the greedy

heuristic for independence systems, Ann. Discrete
Math. 2 (1978) 65-74.

[14] M. Jinger, Polyhedral Combinatorics and the Acyclic
Subgraph Problem (Heldermann, 1985).

[15] C.L. Lucchesi, A minimax equality for directed graphs,
Ph.D. Dissertation, University of Waterloo, Waterloo,
Oniario, 1976.

[16] L. Lin and S. Sahni, Fair edge deletion problems,
IEEE Trans. Comput. 38 7(1989) 56-761.

[17] S. Miyano, Systematized approaches to the complexity
of subgraph problems, J. Inform. Process. 13 (1990}
442-447,

{18] M. Penn and Z. Nutov, Minimum feedback arc set
and maximum integral dicycle packing in Kj 3-free
digraphs, 1993.

[19] CH. Papadimitriou and M. Yannakakis,
Optimization, approximation, and complexity classes,
J. Comput. System Sci. 43 (1991) 425-440.

[20] V. Ramachandran, Finding a minimum feedback arc
set in reducible flow graphs, J. Algorithins 9 (1988)
299-313.

[21] M. Yannakakis, Node- and edge-delction NP complete
problems, in: Proc. 10th ACM Symp. on Theory of
Computing (ACM, New York, 1978) 253-264.

